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1. Introduction

1.1 Motivation

The Λ(1405) is the lowest-lying odd-parity state of the Λ baryon. With a mass of 1405.1+1.3−1.0
MeV, it is lower than the lowest odd-parity state of the non-strange nucleon (N(1535)). We now
understand this unusually low mass to be a consequence of its flavour-singlet structure [1, 2, 3].

While early lattice QCD studies of this state were unable to reproduce the associated mass sup-
pression, an extrapolation of the trend of the lowest-lying state in our recent work [4] was consistent
with the physical mass of the Λ(1405). The use of a correlation matrix is key to this success. Away
from the SU(3)-flavour–symmetry limit, octet and singlet state components are strongly mixed.
A correlation matrix analysis is required to isolate the QCD eigenstates and reveal the non-trivial
mixing of octet and singlet components. Subsequent studies have confirmed our results [5].

Key to our work’s success is the inclusion of both multiple source and sink smearings, and
multiple flavour and Dirac structures in the choice of interpolating fields. Figure 1 displays the
flavour composition of the Λ(1405) in the relative components of the different interpolating fields
from a 6×6 correlation matrix as the pion-mass varies. While the highly-smeared, flavour-singlet
operator is always the dominant contribution, an octet component becomes important away from the
SU(3)-flavour–symmetry limit. It’s also interesting to observe the smaller role for the 16-sweep-
smeared flavour-singlet interpolator as the u and d quark masses become light.

The variational analysis is also necessary to obtain a signal that is stable for sufficiently long
Euclidean times after the fermion source (in our case, t = 16) to perform the current insertion for
the form factor analysis. Figure 2 demonstrates the long-term stability of the correlation function
extracted from the variational analysis. We insert the current at t = 21, five time slices after the
fermion source. Here the variational analysis provides optimal coupling to the lowest state and
effective suppression of excited state contaminations. Moreover, the two-point correlation function
remains stable long enough after the current insertion to extract reasonable measures of the form
factors.
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Figure 1: Relative strength of each interpolating field’s eigenvector component, ui(0) of Eq. (2.4), for the
Λ(1405) as a function ofm2

π . The light-coloured points are smeared with 16 sweeps of smearing and the dark
points with 100 sweeps. The gold points correspond to the flavour-octet operator with a (qCγ5 q)q Dirac
structure, the red points correspond to the same flavour-octet structure but with a (qCq)γ5 q Dirac structure.
The blue points correspond to the flavour-singlet operator.
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Figure 2: Comparison between the correlation functions extracted from a variational analysis (red) and from
a traditional analysis (blue). The variational analysis results in a lower slope that is constant over a larger fit
window, indicating a more complete isolation of the lowest-lying state. The fermion source is at t= 16 (first
dashed line), and the current insertion for the form factor analysis is at t= 21 (second dashed line).

1.2 Simulation Details

We use the PACS-CS (2+ 1)-flavour full-QCD ensembles [6], made available through the
ILDG [7]. These ensembles have a lattice size of 323 × 64 with β = 1.90, and there are five
pion masses ranging from 640MeV down to 156MeV. Each ensemble has the same dynamical
strange quark mass, corresponding to κs = 0.13640, however we perform our simulations using
κs = 0.13665 for the valence strange quarks to reproduce the correct kaon mass in the physical
limit. As demonstrated in Ref. [1], this partial quenching is subtle and doesn’t affect the extracted
form factors. We consider setting the scale using both the Sommer and PACS-CS schemes, how-
ever we find no qualitative difference between them in the behaviour of the form factors. We select
the PACS-CS scheme in the following.

2. Techniques

2.1 Two-Point Variational Analysis

To extract correlation functions from a variational analysis [8], we first need to construct the
correlation matrix. If we consider some set of operators {χi } that couple to the states of interest,
the associated correlation matrix can be written as

Gij(Γ;p; t) = ∑
x
e−ip·x tr(Γ⟨Ω|χi(x)χ j(0)|Ω⟩), (2.1)

where Γ is some Dirac matrix that sensibly selects the appropriate components of the resultant
spinor matrix. We then solve for the left (vα(p)) and right (uα(p)) generalised eigenvectors of
G(Γ;p; t+δ t) and G(Γ;p; t), so that

G(Γ;p; t+δ t)uα(p) = e−Eα (p)δ tG(Γ;p; t)uα(p), and (2.2)

vα⊤(p)G(Γ;p; t+δ t) = e−Eα (p)δ t vα⊤(p)G(Γ;p; t). (2.3)
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These eigenvectors identify the “ideal” combinations ϕ α of the original operators χi that per-
fectly isolate individual energy eigenstates at momentum p. As such, we can write

ϕ α(p) = vα
i (p)χi ϕ α(p) = χ i uα

i (p) . (2.4)

Note that the Greek indices, α and β , label states and are not to be summed over; unlike the Latin
operator indices (i, j, . . .) which are summed over. Using these operators, we can extract correlation
functions for the individual eigenstates,

Gα(Γ;p; t) = ∑
x
e−ip·x tr(Γ⟨Ω|ϕ α(x)ϕ α(0)|Ω⟩) (2.5)

= ∑
x
e−ip·x tr(Γ⟨Ω|vα

i (p)χi χ j uα
j (p)|Ω⟩) (2.6)

= vα
i (p)

(
∑
x
e−ip·x tr(Γ⟨Ω|χi χ j|Ω⟩)

)
uα
j (p) (2.7)

= vα⊤(p)G(Γ;p; t)uα(p). (2.8)

2.2 Three-point Variational Analysis

To extract the form factors for an energy eigenstate α , we need to calculate the three-point
correlation function

Gµ
α(Γ;p′,p; t2, t1) = ∑

x1,x2
e−ip

′·x2 ei(p
′−p)·x1 tr(Γ⟨Ω|ϕ α(x2) jµ(x1)ϕ α(0)|Ω⟩). (2.9)

where jµ is the current. This takes the form

Gµ
α(Γ;p′,p; t2, t1) = e−Eα (p′)(t2−t1) e−Eα (p)t1 tr

(
Γ ∑

s,s′
⟨Ω|ϕ α |p′,s′⟩⟨p′,s′|jµ |p,s⟩⟨p,s|ϕ α |Ω⟩

)
(2.10)

where the current matrix element ⟨p′,s′|jµ |p,s⟩ encodes the form factors of the interaction.
Using the nature of the “perfect” operators ϕ α , we can rewrite this perfect three-point corre-

lation function in terms of the non-projected three-point correlation functions Gµ
ij calculated using

the original operators χi using

Gµ
α(Γ;p′,p; t2, t1) = ∑

x1,x2
e−ip

′·x2 ei(p
′−p)·x1 tr(Γ⟨Ω|vα

i (p′)χ i(x2) jµ(x1)χ j(0)uα
j (p)|Ω⟩) (2.11)

= vα⊤(p′)Gµ(Γ;p′,p; t2, t1)uα(p). (2.12)

To eliminate the temporal dependence of the three-point correlation function, we construct the
ratio [9, 10]

Rµ
α(Γ′,Γ;p′,p; t2, t1) =

(
Gµ

α(Γ;p′,p; t2, t1)Gµ
α(Γ;p,p′; t2, t1)

Gα(Γ′;p′; t2)Gα(Γ′;p; t2)

)1/2

, (2.13)

and then to further simplify things define a reduced ratio as

Rµ
α(Γ′,Γ;p′,p; t2, t1) =

(
2Eα(p)

Eα(p)+mα

)1/2( 2Eα(p′)
Eα(p′)+mα

)1/2
Rµ

α(Γ′,Γ;p′,p; t2, t1) (2.14)

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
8
0

Electromagnetic Form Factors for the Λ(1405) Benjamin J. Menadue

2.3 Choice of Operators

Since the Λ baryon lies in the centre of the SU(3)-flavour symmetry group, there are many
operators that will couple to it. We can consider interpolating fields having either a flavour-octet
or -singlet symmetry structure, in addition to the usual two Dirac structures. (We note that the two
Dirac structures are related through a Fierz transformation for the flavour-singlet operator.) These
operators have the forms [9]

χ8
1 =

1√
6

εabc
(
2(uaCγ5 db)sc+(uaCγ5 sb)dc− (daCγ5 sb)uc

)
, (2.15)

χ8
2 =

1√
6

εabc
(
2(uaCdb)γ5 sc+(uaCsb)γ5 dc− (daCsb)γ5 uc

)
, and (2.16)

χ1 = 2εabc
(
(uaCγ5 db)sc− (uaCγ5 sb)dc+(daCγ5 sb)uc

)
, (2.17)

where we have suppressed the x dependence for clarity. We also expand our operator basis by
including operators smeared by differing amounts of gauge-invariant Gaussian smearing [11].

Note that if too few operators are included, the states won’t be sufficiently isolated, while if
we include too many the correlation matrix will be too ill-conditioned to solve for the generalised
eigenvectors. We focus on the 6× 6 matrix formed by using χ8

1 , χ8
2 , and χ1 together with 16 and

100 sweeps of smearing. The selection of these two smearings gives results consistent with other
smearing combinations involving at least one of 100 or 200 smearing sweeps, but offer reduced
statistical noise.

2.4 Extracting Form Factors

Once we have calculated the reduced ratio Rµ
α for some energy eigenstate α , we can turn our

attention to extracting information such as the form factors of the interaction. The current matrix
element for spin-1/2 baryons can be written in the form

⟨p′,s′|jµ |p,s⟩=
(

m2
α

Eα(p)Eα(p′)

)1/2

u
(
F1(q2)γµ + iF2(q2)σ µν qν

2mα

)
u , (2.18)

where F1 and F2 are the Dirac and Pauli form factors. These are related to the Sachs form factors
through

GE(q2) = F1(q2)−
q2

(2mα)2
F2(q2) , and (2.19)

GM(q2) = F1(q2)+F2(q2) . (2.20)

A suitable choice of momentum q and the Dirac matrices Γ and Γ′ allows us to directly access
the Sachs form factors through an “effective” form factor [9]. In particular, we have

G eff,α
E (q2) = Rµ

α(Γ±
4 ,Γ

±
4 ;q,0; t2, t1) , and (2.21)

|εijk qi|G eff,α
M (q2) = (Eα(q)+mα)Rµ

α(Γ±
j ,Γ

±
4 ;q,0; t2, t1) , (2.22)

where the appropriate Dirac matrices are

Γ+
j =

1
2

[
σj 0
0 0

]
, Γ+

4 =
1
2

[
I 0
0 0

]
, (2.23)
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Figure 3: Sachs electric form factors at Q2 = 0.16 GeV2/c2. Results for the individual unit-charged quark
flavour sectors for the Λ(1405) (dark points) are compared with those for the ground state Λ (light).

for the positive-parity states and

Γ−
j =−γ5Γ+

j γ5 =
1
2

[
0 0
0 σj

]
, Γ−

4 =−γ5Γ+
4 γ5 =

1
2

[
0 0
0 I

]
, (2.24)

for negative parity.
Since the momentum transfer for a constant current momentum depends on the mass of the

target, to obtain accurate comparisons we need to correct for any subtle changes in Q2. To do this,
we assume that GE has a dipole dependence on Q2, so that

GE(Q2) =

(
Λ

Λ+Q2

)2
GE(0) . (2.25)

We can solve for Λ by taking our measured GE(Q2) in combination with the GE(0) = 1 implication
of the unit-charge normalisation. This can then be used to evaluate GE at any nearby Q2. Since
there is little variation in Q2 across the range of m2

π under consideration, this is a small correction.

3. Results

Figure 3 presents the pion mass dependence of the Sachs electric form factors for the individual
quark sectors for both the Λ(1405) and the ground-state even-parity Λ at Q2 = 0.16 GeV2/c2. We
see little change between the ground state Λ and the Λ(1405). At heavy quark masses approaching
the flavour-symmetry limit, the light (u or d) quarks in the Λ(1405) have the same distribution as
the strange quark as required by the singlet symmetry. As the u and d quarks become light, we
observe a significant departure from the flavour symmetry, reminiscent of Fig. 1 where the octet
interpolator becomes important for the excitation of the Λ(1405) in the light-quark region. It is also
interesting to note that the strange quark form factor variation is a pure environment effect as the
mass of the strange quark is held fixed.

The deviation from this flavour-singlet picture as the pion mass approaches its physical value
is consistent with the development of a KN component in the structure of the Λ(1405). If we con-
sider such a dressing, the centre of mass lies nearer the heavier nucleon, so the anti-light–quark
contribution is distributed further out by the K; this leaves an enhanced light-quark form factor.
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Similarly, the strange quark is also distributed further out by the K and thus results in a suppressed
form factor relative to the ground state Λ.

4. Conclusion

Variational techniques provide a robust technique for accessing and isolating the eigenstates
of QCD on a finite volume lattice. In the case of the Λ(1405) the correlation matrix is vital in
separating the nearby octet and singlet states of the spectrum. Herein, we have presented the very
first calculation of the electric form factors of the unusual Λ(1405). Our results are consistent with
the development of a non-trivial KN bound-state component as one approaches the physical values
of the u and d quark masses.
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