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We present a calculation of the scalar charge radius of the pion using N f = 2 dynamical flavors of
non-perturbatively O(a)-improved Wilson fermions, extending the calculation to a wider range of
pion masses for a fixed lattice spacing a. We find that the disconnected contribution to the scalar
radius is not negligible especially for smaller pion masses, and is required in order to obtain
the behavior expected from next-to-leading order (NLO) Chiral Perturbation Theory (χPT). The
low-energy constant `4 is determined from a fit to NLO χPT.
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1. Introduction

The Q2-dependence of the scalar pion form factor

Fπ

S

(
Q2)≡

〈
π
+ (p f )

∣∣ mddd +muuu
∣∣π+ (pi)

〉
with Q2 =−(p f − pi)

2 (1.1)

at vanishing momentum transfer determines the scalar radius
〈
r2
〉π

S
of the pion. Since at next-to-

leading order in χPT it depends only on the low-energy constant `4 [1], a calculation of
〈
r2
〉π

S

provides a possibility to determine `4 independently from other low-energy constants.
The matrix element (1.1) receives a connected and a disconnected contribution (cf. figure 1).

The computation of the latter requires knowledge of the all-to-all propagator, which we calculate
using stochastic sources and a generalized hopping parameter expansion as explained in section
3. The scalar form factor is extracted from three- and two-point functions by building appropriate
ratios.For more details on this work, the reader is referred to our recent paper [2].

2. Simulation Setup

For our calculation we use N f = 2 dynamical flavors of O(a)-improved Wilson fermions. The
corresponding Wilson-Dirac operator has the form

DSW =
1

2κ
1− 1

2
H + cSW B , (2.1)

with the O(a)-improvement term cSW B and the hopping matrix H.
Our simulations are performed using gauge ensembles produced as part of the CLS initiative.

An overview of the ensembles used in this study is given in table 1. So far only a single value of the
gauge coupling β = 5.3 has been considered with a corresponding lattice spacing of a = 0.063 fm
[3]. Since all ensembles fulfill mπL≥ 4, we assume finite size effects to be negligible.

β a[fm] lattice mπ [MeV] mπL κ Label Statistics

5.3 0.063 64×323 650 6.6 0.13605 E3 156
5.3 0.063 64×323 605 6.2 0.13610 E4 162
5.3 0.063 64×323 455 4.7 0.13625 E5 1000
5.3 0.063 96×483 325 5.0 0.13635 F6 300
5.3 0.063 96×483 280 4.3 0.13638 F7 351

Table 1: Overview of the CLS ensembles used in this work

3. Calculation of the disconnected loop

For the calculation of the disconnected loop contained in the scalar pion form factor, the all-
to-all propagator is needed. Usually one uses stochastic sources [4] to invert the Dirac-operator,

D−1
SW =

1
N ∑

i
|si〉〈ηi| with DSW |si〉= |ηi〉 . (3.1)
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tst = 0

t

tst = 0

t

− − tst = 0

×

Figure 1: The connected and the disconnected three-point function with subtracted vacuum

To limit the computational overhead, the number N of stochastic sources used in the calculation
has to be small. However, when using fewer sources, the stochastic error, which is expected to be
proportional to 1/

√
N, gets larger. Previous studies [2, 4] have shown that a generalized hopping

parameter expansion (HPE) is a powerful tool to improve the stochastic estimate of the propagator
for a given number N of stochastic sources. With the HPE the inverse of the O(a)-improved
Wilson-Dirac operator can be calculated as

D−1
SW =

k−1

∑
i=0

(
1
2

A−1 H
)i

A−1 +

(
1
2

A−1 H
)k

D−1
SW , (3.2)

where the inverse D−1
SW on the right hand side of (3.2) can be calculated with stochastic sources (c.f

(3.1)). In (3.2) the inverse of the matrix A = (2κ)−11+ cSW B is needed, which due to the locality
of the O(a)-improvement term requires inverting two 6×6-matrices for every lattice point, which
is comparatively cheap in computer time.

For the calculation of the disconnected loop we use N = 3 stochastic sources for the inversion
and k = 6 terms in the generalized hopping parameter expansion.

4. The scalar form factor

4.1 Extracting the form factor

Neglecting exited states, the two-point function of the pseudoscalar density φ(x) = q(x)γ5q(x)
is expected to behave like

C2pt(ts,p) = ∑
x

e−ip·x〈φ(ts,x)φ(0)〉 ∼
Z2

p

2Ep

[
e−tsEp + e−(T−ts)Ep

]
, (4.1)

where Z2
p = |〈π(p)|φ(0) |0〉|2 is the probability for φ for creating a pion of momentum p.

Inserting the scalar density OS(y) = q(y)q(y) at a time t with 0 < t < tS, one obtains the three-
point function

C3pt(t, ts,pi,p f ) = ∑
x,y

e−ip f ·x+iq·y〈φ(ts,x)O(t,y)φ(0)〉

∼ ZpiZp f

4EpiEp f

〈
π(p f )

∣∣OS(0) |π(pi)〉e−(ts−t)Ep f e−tEpi

(4.2)

with the scalar pion form factor
〈
π(p f )

∣∣OS(0) |π(pi)〉. Since the vacuum contribution of the scalar
density,

Cvac(t, ts,pi,p f ) =C2pt(ts,p f )∑
y

eiq·y 〈OS(t,y)〉 , (4.3)
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is non-zero, it has to be subtracted before equation (4.2) can be employed to determine the scalar
form factor. Figure 1 shows the three contributions to the three-point function, i.e. the connected
and the disconnected contributions with subtracted vacuum. Note that the vacuum subtraction also
cancels the additive renormalization b0 of the scalar density

〈
OR〉= Zs 〈O−b0〉 , (4.4)

which is a consequence of the breaking of the chiral symmetry by the Wilson term. The remaining
multiplicative renormalization constant Zs is not determined in this work, since it cancels in the
calculation of the scalar radius.

To extract the scalar form factor from (4.2) it is convenient to build ratios of three- and two-
point functions [5]. In this work two different ratios

R1(t, ts,pi,p f ) =

√
C3pt(t, ts,pi,p f )C3pt(t, ts,p f ,pi)

C2pt(ts,pi)C2pt(ts,p f )
(4.5)

R3(t, ts,pi,p f ) =
C3pt(t, ts,pi,p f )

C2pt(ts,p f )

√
C2pt(ts,p f )C2pt(t,p f )C2pt(ts− t,pi)

C2pt(ts,pi)C2pt(t,pi)C2pt(ts− t,p f )
(4.6)

will be used. Inserting the expressions for three- and two-point functions in R1 (4.5) one obtains

R1(t, ts,pi,p f )∼
〈
π(p f )

∣∣OS |π(pi)〉
2
√

EpiEp f

√√√√ e−Epi tse−Ep f ts

(e−Epi ts + e−Epi (T−ts)) · (e−Ep f ts + e−Ep f (T−ts))
, (4.7)

where all the overlap factors Zp and the dependence of the operator insertion time t are canceled.
The pion energies Ep in the remaining ts-dependent part, can be extracted from two-point functions.

For R3 one obtains

R3(t, ts,pi,p f )∼
〈
π(p f )

∣∣OS |π(pi)〉
2
√

EpiEp f

f (t, ts) (4.8)

when two- and three-point functions are inserted. The left-over time-dependence f (t, ts) is analyti-
cally known and again contains only pion energies Ep. For large time separations 0� t� ts� T/2

the time-dependence vanishes, i.e. f (t, ts)→ 1. Note that, in contrast to (4.7), equation (4.8) is
only valid if the same type of source is used at pion source and pion sink, e.g. local-local or
smeared-smeared, since the overlap factors Zp depend on the source type.

4.2 Results

Our results for the ratios obtained on the E5 ensemble (cf. table 1) are shown in figures 2
and 3 for Q2 = 0 and Q2 = 0.278 GeV2, respectively. Momenta have been inserted via Fourier
transformation.

For the connected part of the scalar form factor we currently have only data from correlation
functions with a local operator at the pion sink and Gaussian smearing at the pion source. There-
fore, only ratio R1 can be used. For the disconnected contribution to the scalar form factor we can
make use of smeared-smeared two-point functions, thus both ratios can be applied. Since R3 gives
a much clearer signal for the disconnected part, we use R3 for the analysis.
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Figure 2: Our results for the ratios for Q2 = 0 GeV2. The connected contribution is shown on the left, the
disconnected on the right. In both cases the ratios are divided by the time-dependence.
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Figure 3: Our results for the ratios for Q2 = 0.278 GeV2. We use R1 for the connected contribution (right)
and R3 for the disconnected contribution (left). In both cases the ratios are divided by the appropriate time-
dependence.

In all data sets the ratios are divided by the known time-dependences (cf. (4.7) and (4.8)),
such that a plateau independent in ts can be expected. Nevertheless, we observe that for Q2 = 0 the
plateau values grow as ts is increased, an effect which we attribute to excited state contaminations.
To avoid systematics from excited states, ratios with ts < 24 have been omitted from the analysis.
The blue lines in figures 2 and 3 show the results of a global fit to the plateau regions of the data
with ts ≥ 24.

5. The Scalar Radius

The scalar radius is defined as

〈
r2〉π

S
=− 6

Fπ
S
(0)

∂Fπ

S
(Q2)

∂Q2

∣∣∣
Q2=0

. (5.1)

So far, we have results for Q2 = 0 and the smallest non-vanishing momentum transfer. For higher
momenta the ratios get very noisy and the signal is essentially lost. However, we can obtain an es-
timate for the scalar radius from two different momentum transfers using a parameterization linear
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Figure 4: The Q2-dependence of the scalar form factor. The red points are our results for the total form
factor, the green points for the connected contribution only. In both cases a linear curve was matched to the
data to estimate the scalar radius.

in Q2. Figure 4 shows our results for the scalar form factor plotted against the momentum transfer
for the E5 ensemble. The red points are the values for the total form factor, i.e. connected and
disconnected, the green points are the results we obtain neglecting the disconnected contribution.
To estimate the scalar radius a linear curve was matched to the data.

In figure 5 our results for the scalar radius for the different ensembles are plotted against the
pion mass m2

π . The red points are the data from the total form factor, whereas the yellow points
show the results from the connected contribution only. Clearly, the disconnected contribution to the
scalar radius is not negligible, in qualitative agreement with results from partially quenched χPT
[6].

To extrapolate to the physical pion mass, we use chiral perturbation theory. At next-to-leading
order, the scalar radius is given by [1]

〈
r2〉π

S
=

1
(4πF)2

(
−13

2

)
+

6
(4πF)2

[
`4 + ln

(
m2

π,phys

m2
π

)]
, (5.2)

and depends only on one low-energy constant `4. The blue line in figure 5 shows the result of a fit of
(5.2) to our data, where `4 is used as a free fit parameter. For the scalar radius at physical pion mass
we obtain

〈
r2
〉π

S
= 0.633± 0.021 fm2, which is in good agreement with the value obtained from

ππ-scattering [7] shown in green in figure (5). Furthermore, from the fit we obtain `4 = 4.73±0.12,
which agrees well with the result from the vector form factor [8] computed on the CLS ensembles.
Note, that all errors are purely statistical, since no sources of systematic errors have been studied
so far.

6. Summary and Outlook

Using stochastic sources and a generalized hopping parameter expansion, we are able to cal-
culate the disconnected contribution to the scalar pion form factor precisely. When calculating the
scalar radius, we find that the disconnected contribution is not negligible and is required to obtain

6
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Figure 5: The m2
π -dependence of the scalar radius. The red points show our results for the total form factor,

the yellow points the results for the disconnected contribution only. The blue curve is a fit of NLO χPT to
the red points.

the behavior in m2
π as expected from NLO χPT. A fit to our results enables us to determine the

low-energy constant `4. The extrapolated value for the scalar radius at physical pion mass is in
good agreement with the value from ππ-scattering data. So far, no systematic errors have been de-
termined and thus all errors quoted are purely statistical. In the future we plan to address different
sources of stochastic errors, such as lattice artifacts or finite volume effects. Furthermore, we will
extended our calculations to different lattice spacings, such that a continuum extrapolation can be
performed.
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