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1. Introduction

From deep inelastic scattering (DIS) experiments it is known, see[p.ghgtjthe nucleon is
not a fundamental particle but consists of so-called partons as its consgitlie contribution of
these partons to the nucleon momentum is described by a parton distributiiofuiiP DF) f(x),
which is the probability to find a partgmwith a momentum fractior. The first moment of the PDF
(X)p = [ xfp(x)dxis the fraction of the total nucleon momentum carried by the parton. This implies
then the energy-momentum sum rgig(x), = 1. The partons were eventually identified as the
guarks and the gluons as the fundamental building block of hadrons, Teienergy-momentum
sum rule of partons translates directly to a sum rule involving all quarkshengluons,

> (Xg+(X)g=1. (1.1)
q

Further experimental input suggests that the contribution coming only fipnamnd down
quarks does not add up to o [2]. Since it is expected that the heawigksgnill not significantly
contribute to the average nucleon momentfim [3], this implies that the gluonsaciamye amount
of the nucleon momentum, such that the sum rule of[eq. (1.1) is satisfied.

Therefore, the computation of the gluon moment is necessary to fully uaddrshe structure
of the nucleon. However, at the moment, despite the fact that there areresatig for the quark
structure of the nucleon, see e.g. reE|s|:[4, 5], there are just a gliséor(x)4 which are, moreover,
only obtained from quenched computatiofis[[6, 7]. The work presemesidims at giving a first
result from a computation on gauge configurations generated with lightgstrand charm sea
quarks.

We can access the gluon moment of a hadron via the matrix elements of the gkraioo:

The matrix elements of this operator can be computed with a ratio of a threeapaliat two-point
function, where the sink timeand the operator time are chosen properly.

(h(p,t)&(1)h(p,0)) o<t
(h(p,t)h(p,0))

whereh(p,t) denotes a hadron with momentypat sink timet. The general matrix element of
eq. [L.B) can be decomposed into several terms proportional to ajapeofarm factors, see e.g.
the discussion in ref[J4]. The relevant form factor for our purpies&, which can be related to
the gluon moment. In order to proceed, we need to consider certaineaptsns of the operator
in eq. (L.2). Here we choose two of them

(O)n(ph(p) (1.3)

1
3
The matrix elements of these operatoprs can be written in terms of the gluon ma@ament a

= Oy, B=0s—Z0j. (1.4)

(A)NpNE) = —1Pi{X)g, (Z)npnep) = (M + 32’\152)0()9 : (1.5)

Both operators have certain drawbacks. The operataran only be taken when a non-zero mo-
mentum is injected. It is known that the computation of momentum dependerdtoparatrix
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elements result in a larger noise-to-signal ratio than a momentum-zero computdtioh is pos-
sible for operatorA.

In case of the operato® there is a subtraction of two terms which are similar in magnitude.
This can be understood from the lattice version of the operator, exgar@sterms of plaquettes:

:;‘g (ztrc[um(x,t)]—Ztrc[Uij(X,t)]> . (1.6)

i<]

B(t)

Here, one sees that the spatial and the temporal part of the plaquettle amnigery similar in size,
need to be subtracted, leading potentially again to a bad signal-to-noisaedyedfdahe correspond-
ing matrix element. The choice we made for the following discussion is honethble®perator
2 since it is directly accessible to us.

2. Feynman-Hellman theorem

One approach to extract the matrix elements of the gluon operator that pleeidp [8] uses
the Euclidean form of the Feynman-Hellman theorem. If one introduces sparatorA &' into
the action of the system, the operator’'s matrix elements can be derived feodetivative of the
energy of the state with respectio

9EN(A) _ . 9S(A)
o~ Can INENP)A - (2.1)
Here :... : means that the vacuum expectation value of the operator has to be sdhtfar the

purpose of calculating the three-point function for the gluon operatanedify the Wilson gauge
action as

1 1
SA) = é[3(1+)\) > tre[1—Uig] + éB(l—)\) > tre[1-Uj] . (2.2)
] i<)
Note thatA = 0 corresponds to the standard Wilson plaquette gauge action. When apgiy i),
(L.8) and [2]1) one can relate the derivative of the nucleon energygo

7]
%}/\:o: _g <mN+32En 2> (X)g - (2.3)

There is no subtraction of the vacuum expectation value here, bectlimagulattice rotational
symmetry it can be shown that the expectation value of the operator ifi &yigZzéro. When
computing the nucleon mass at zero momentum, the relation can be simplified as:

2 dmN

<X>g:ﬂ07/\’;\:0- (2.4)

In order to compute the nucleon mass for different, non-2evalues, new gauge ensembles had
to be generated. In addition, due to the change of the gauge action, thiedppprametek had to
be re-tuned to its critical value for each ensemble, in order to regair tagimprovement.

We have performed preliminary tests on small lattices with heavy quark maskespdhe
computational effort affordable. The simulations were carried out withx<248 lattices andN; =
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241+ 1 flavors of maximally twisted mass fermions. We emplofed 1.95 which corresponds
to a lattice spacing of ~ 0.078 fm and a twisted mass parameter= 0.085 which leads to a
pion mass ofnps~ 490 MeV. As gauge action we used the Iwasaki action, however thetrayn
Hellman theorem was only applied to the Wilson part, i.e. the pure plaquette foidue, action.

Our results for three differem values on~ 200 gauge configurations and the nucleon mass
atA =0 can be seenin Fif] 1.
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Figure 1. Dependence of the nucleon mass on the change of the gauge @ifierentA values). The slope
of the fit can be related to the gluon moment.

We performed a linear fit id to the data of the nucleon mass. The fact that the data shows a
A dependence suggests that we can obtain a non-zero signal for tmengtuoent. However, the
error of the slope is rather large (about 30%). The systematic errasligply even larger, because
it is not known in whichA region a linear fit is really justified. To study this systematic effect one
would need to compute the nucleon mass with a smaller error for mpaeénts than used here.

3. Direct method

An alternative, more straightforward method of computing the matrix element {I8) is a
direct approach, where, through performing the relevant Wick cciitras, the three-point function
can be expressed by a suitable combination of propagators and gaugd-tinkise gluon three-
point function this is actually a trivial task, because there are no quddk fiethe gluon operator.
Subsequently, there are no possible contractions between the glu@too@ard the interpolating
fields of the nucleon. The three-point function can, in fact, be written poduct of nucleon
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two-point functions and the gluon operator. For the zero momentum computeiget

(IN(N(O)]p=0%(1)) o<t
(N(H)N(0)p=0)

The advantage of this method is that we can reuse existing two-point fus@iahonly have to
compute the gluon operator on the very same configurations which redjttieesomputational
effort.

The following results were computed on a®3264 lattice withNy = 2+ 1+ 1 flavors of
maximally twisted mass fermions. We gét= 1.95, which corresponds to a lattice spacing of
a~ 0.078 fm and the twisted mass parametet 0.055, which is a pion mass ofps~ 393 MeV.
For the two-point function we used 16 different source positions on gacgge configuration which
corresponds to 32 measurements, because we considered prot@utod fields. The first results
for a local gluon operator can be seen in the left panel of[Fig. 2.

M (X)g - (3.1)
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Figure 2: left: Nucleon matrix element for a local gluon operator for a setsink separation of 11 and
different operator insertion timess right: Relative error of the nucleon matrix element for differentP4
smearing steps of the gluon operator.

Obviously, it is not possible to extract a signal, due to a large noise-talsigtio. A possible
solution for this problem can be found ] [8], where it is suggested to Y& $tnearing[[9] for the
links in the gluon operator. We applied several steps of HYP smearing wigmegers from[J9]
and present the relative error (noise-to-signal ratio) for the obbéin the right panel of Fid] 2.

We found a significant reduction of the noise-to-signal ratio with incrgasiimber of HYP
smearing steps. Thus, we subsequently applied five steps of HYP smearing

On the left panel of Fig]3 one can see the signal we got from a singteessink separation,
where % = gﬁ)@@ and x is a normalization factor caused by using HYP smearing. We clearly
got a non-zero value with a reasonable error of about 10%. Howthisrsignal could still be
contaminated by excited state effects. This can be checked by computing titte etement for
different source-sink separations. On the right panel one can aethdre are no strong excited
states effects, because the plateau value seems to be stable for déffiekeirthe positions.
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Figure 3: left: Nucleon matrix element for a HYP-smeared gluon operatoafsource-sink separation of
11 and different operator insertion timesright: The same matrix element for three different source-sink
separations% = 4Bx %

4. Conclusion and outlook

We presented two methods which potentially can be used to eXigcon the lattice: The
first method makes use of the Feynman-Hellman theorem and has the adwainy#lding a sta-
tistically significant signal for rather moderate statistics. However, the legilcn needs dedicated
simulations with different values of to establish unambiguously the linear dependence of the
results om. Furthermore, each simulation has to be tuned to a critical value iof order to en-
sure automati@’(a) improvement. Therefore, overall, the computational cost associated with this
method is large.

The second method directly computes the three-point function from whighcan be ex-
tracted. In order to obtain a non-zero signal, one has to apply smearthg gauge links entering
the operator. Although one needs large statistics, one can use nucle@oitwdunctions com-
puted for other observables and therefore the overall cost is small.

Our study therefore suggests that the direct method may be the method & thoalculate
this particular observable. Still, the Feynman-Hellman theorem could be asedrass-check on
ensembles where it is feasible to apply.

Another issue regarding the computation of the physical valyg)gfis that the lattice matrix
element needs to be renormalized. Since the gluon operator is a singlatoopewill mix with
the quark momentum fractiofx)q. The relation between the renormalized and the bare values of
both quantities is given by a22 mixing matrix.

<X>|VTS <X> bare
< gl\/IS> - ZZX2< gbare>' (4.1)
>q{X)g Yq{X)g
For (x)4 the relevant matrix elements are callgg andZ,q and the relation is
(X = Zhawe ggX)g™+ (1~ Zharead Y (K)o (4.2)
q
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As a first step we will compute these factors perturbatively. This will pruisiwith a first estimate
of the factors and we will get insight in the renormalization process of thasiify. If we know
the renormalization conditions, a non-perturbative renormalization camfdlimce the smearing
of the operator should be included into the renormalization process, welsdltry to use other
smearing techniques for the lattice computation, i.e. HEX or stout smearind) waicbe easier
employed in a perturbative computation. Once the renormalization is completéivoe &ble to
give the first physical result fafx)y with fully active sea quarks.

The next step should be the computation(®fy at physical pion mass using the recently
generated ensembles with = 2 twisted-mass-clover fermions J10]. For heavier quark masses the
continuum limit for this quantity can be studied.

Furthermore, the result can be used for the determination of the gluoribctiuin to the
nucleon spin, which at the moment is not known from the lattice. Moreowauit also be possible
to compute the gluon moment of other hadrons, e.g. the pior{|cf. [8]).
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