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1. Introduction
From deep inelastic scattering (DIS) experiments it is known, see e.g. [1],that the nucleon is

not a fundamental particle but consists of so-called partons as its constituents. The contribution of
these partons to the nucleon momentum is described by a parton distribution function (PDF) fp(x),
which is the probability to find a partonp with a momentum fractionx. The first moment of the PDF
〈x〉p =

∫

x fp(x)dx is the fraction of the total nucleon momentum carried by the parton. This implies
then the energy-momentum sum rule∑p〈x〉p = 1. The partons were eventually identified as the
quarks and the gluons as the fundamental building block of hadrons. Thus, the energy-momentum
sum rule of partons translates directly to a sum rule involving all quarks andthe gluons,

∑
q
〈x〉q + 〈x〉g = 1 . (1.1)

Further experimental input suggests that the contribution coming only from up- and down
quarks does not add up to one [2]. Since it is expected that the heavier quarks will not significantly
contribute to the average nucleon momentum [3], this implies that the gluons carrya large amount
of the nucleon momentum, such that the sum rule of eq. (1.1) is satisfied.

Therefore, the computation of the gluon moment is necessary to fully understand the structure
of the nucleon. However, at the moment, despite the fact that there are manyresults for the quark
structure of the nucleon, see e.g. refs. [4, 5], there are just a few results for〈x〉g which are, moreover,
only obtained from quenched computations [6, 7]. The work presented here aims at giving a first
result from a computation on gauge configurations generated with light, strange and charm sea
quarks.

We can access the gluon moment of a hadron via the matrix elements of the gluon operator:

Oµν = −trcGµρGνρ . (1.2)

The matrix elements of this operator can be computed with a ratio of a three-pointand a two-point
function, where the sink timet and the operator timeτ are chosen properly.

〈h(p, t)O(τ)h(p,0)〉

〈h(p, t)h(p,0)〉

0≪τ≪t
= (O)h(p)h(p) (1.3)

whereh(p, t) denotes a hadron with momentump at sink timet. The general matrix element of
eq. (1.3) can be decomposed into several terms proportional to appropriate form factors, see e.g.
the discussion in ref. [4]. The relevant form factor for our purposeis A20, which can be related to
the gluon moment. In order to proceed, we need to consider certain representations of the operator
in eq. (1.2). Here we choose two of them

Ai = Oi4, B = O44−
1
3
O j j . (1.4)

The matrix elements of these operatoprs can be written in terms of the gluon moment as

(Ai)N(p)N(p) = −ipi〈x〉g, (B)N(p)N(p) = (mN +
2

3EN
~p2)〈x〉g . (1.5)

Both operators have certain drawbacks. The operatorAi can only be taken when a non-zero mo-
mentum is injected. It is known that the computation of momentum dependent operator matrix
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elements result in a larger noise-to-signal ratio than a momentum-zero computation, which is pos-
sible for operatorB.

In case of the operatorB there is a subtraction of two terms which are similar in magnitude.
This can be understood from the lattice version of the operator, expressed in terms of plaquettes:

B(t) =
4
9

β
a ∑

x

(

∑
i

trc[Ui4(x, t)]−∑
i< j

trc[Ui j (x, t)]

)

. (1.6)

Here, one sees that the spatial and the temporal part of the plaquette, which are very similar in size,
need to be subtracted, leading potentially again to a bad signal-to-noise behavior of the correspond-
ing matrix element. The choice we made for the following discussion is nonetheless the operator
B since it is directly accessible to us.

2. Feynman-Hellman theorem

One approach to extract the matrix elements of the gluon operator that was applied in [6] uses
the Euclidean form of the Feynman-Hellman theorem. If one introduces some operatorλO into
the action of the system, the operator’s matrix elements can be derived from the derivative of the
energy of the state with respect toλ .

∂EN(λ )

∂λ
= (:

∂ Ŝ(λ )

∂λ
:)N(p)N(p),λ . (2.1)

Here :... : means that the vacuum expectation value of the operator has to be subtracted. For the
purpose of calculating the three-point function for the gluon operator wemodify the Wilson gauge
action as

S(λ ) =
1
3

β (1+λ )∑
i

trc[1−Ui4]+
1
3

β (1−λ )∑
i< j

trc[1−Ui j ] . (2.2)

Note thatλ = 0 corresponds to the standard Wilson plaquette gauge action. When applying eq. (1.5),
(1.6) and (2.1) one can relate the derivative of the nucleon energy to〈x〉g.

∂EN

∂λ
∣

∣

λ=0 = −
3
2

(

mN +
2

3En
~p2
)

〈x〉g . (2.3)

There is no subtraction of the vacuum expectation value here, because utilizing lattice rotational
symmetry it can be shown that the expectation value of the operator in eq. (1.6) is zero. When
computing the nucleon mass at zero momentum, the relation can be simplified as:

〈x〉g =
2

3mN

∂mN

∂λ
∣

∣

λ=0 . (2.4)

In order to compute the nucleon mass for different, non-zeroλ values, new gauge ensembles had
to be generated. In addition, due to the change of the gauge action, the hopping parameterκ had to
be re-tuned to its critical value for each ensemble, in order to regain theO(a) improvement.

We have performed preliminary tests on small lattices with heavy quark masses tokeep the
computational effort affordable. The simulations were carried out with 243×48 lattices andNf =

3
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2+1+1 flavors of maximally twisted mass fermions. We employedβ = 1.95 which corresponds
to a lattice spacing ofa ≈ 0.078 fm and a twisted mass parameterµ = 0.085 which leads to a
pion mass ofmPS≈ 490 MeV. As gauge action we used the Iwasaki action, however the Feynman-
Hellman theorem was only applied to the Wilson part, i.e. the pure plaquette part, of the action.

Our results for three differentλ values on∼ 200 gauge configurations and the nucleon mass
at λ = 0 can be seen in Fig. 1.
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Figure 1: Dependence of the nucleon mass on the change of the gauge action (differentλ values). The slope
of the fit can be related to the gluon moment.

We performed a linear fit inλ to the data of the nucleon mass. The fact that the data shows a
λ dependence suggests that we can obtain a non-zero signal for the gluon moment. However, the
error of the slope is rather large (about 30%). The systematic error is probably even larger, because
it is not known in whichλ region a linear fit is really justified. To study this systematic effect one
would need to compute the nucleon mass with a smaller error for moreλ points than used here.

3. Direct method

An alternative, more straightforward method of computing the matrix element of eq. (1.3) is a
direct approach, where, through performing the relevant Wick contractions, the three-point function
can be expressed by a suitable combination of propagators and gauge links. For the gluon three-
point function this is actually a trivial task, because there are no quark fields in the gluon operator.
Subsequently, there are no possible contractions between the gluon operator and the interpolating
fields of the nucleon. The three-point function can, in fact, be written as aproduct of nucleon
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two-point functions and the gluon operator. For the zero momentum computationwe get

〈[N(t)N(0)]p=0B(τ)〉

〈N(t)N(0)p=0〉

0≪τ≪t
= mN〈x〉g . (3.1)

The advantage of this method is that we can reuse existing two-point functions and only have to
compute the gluon operator on the very same configurations which requireslittle computational
effort.

The following results were computed on a 323 × 64 lattice withNf = 2+ 1+ 1 flavors of
maximally twisted mass fermions. We setβ = 1.95, which corresponds to a lattice spacing of
a≈ 0.078 fm and the twisted mass parameterµ = 0.055, which is a pion mass ofmPS≈ 393 MeV.
For the two-point function we used 16 different source positions on each gauge configuration which
corresponds to 32 measurements, because we considered proton and neutron fields. The first results
for a local gluon operator can be seen in the left panel of Fig. 2.
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Figure 2: left: Nucleon matrix element for a local gluon operator for a source-sink separation of 11 and
different operator insertion timesτ. right: Relative error of the nucleon matrix element for different HYP-
smearing steps of the gluon operator.

Obviously, it is not possible to extract a signal, due to a large noise-to-signal ratio. A possible
solution for this problem can be found in [8], where it is suggested to use HYP smearing [9] for the
links in the gluon operator. We applied several steps of HYP smearing with parameters from [9]
and present the relative error (noise-to-signal ratio) for the observable in the right panel of Fig. 2.

We found a significant reduction of the noise-to-signal ratio with increasing number of HYP
smearing steps. Thus, we subsequently applied five steps of HYP smearing.

On the left panel of Fig. 3 one can see the signal we got from a single source-sink separation,
whereB = 4

9β χB̃ and χ is a normalization factor caused by using HYP smearing. We clearly
got a non-zero value with a reasonable error of about 10%. However, this signal could still be
contaminated by excited state effects. This can be checked by computing the matrix element for
different source-sink separations. On the right panel one can see that there are no strong excited
states effects, because the plateau value seems to be stable for differentsink time positions.
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Figure 3: left: Nucleon matrix element for a HYP-smeared gluon operator fora source-sink separation of
11 and different operator insertion timesτ. right: The same matrix element for three different source-sink
separations.B = 4

9β χB̃

4. Conclusion and outlook
We presented two methods which potentially can be used to extract〈x〉g on the lattice: The

first method makes use of the Feynman-Hellman theorem and has the advantage of yielding a sta-
tistically significant signal for rather moderate statistics. However, the calculation needs dedicated
simulations with different values ofλ to establish unambiguously the linear dependence of the
results onλ . Furthermore, each simulation has to be tuned to a critical value ofκ, in order to en-
sure automaticO(a) improvement. Therefore, overall, the computational cost associated with this
method is large.

The second method directly computes the three-point function from which〈x〉g can be ex-
tracted. In order to obtain a non-zero signal, one has to apply smearing onthe gauge links entering
the operator. Although one needs large statistics, one can use nucleon two-point functions com-
puted for other observables and therefore the overall cost is small.

Our study therefore suggests that the direct method may be the method of choice to calculate
this particular observable. Still, the Feynman-Hellman theorem could be used as a cross-check on
ensembles where it is feasible to apply.

Another issue regarding the computation of the physical value of〈x〉g is that the lattice matrix
element needs to be renormalized. Since the gluon operator is a singlet operator it will mix with
the quark momentum fraction〈x〉q. The relation between the renormalized and the bare values of
both quantities is given by a 2×2 mixing matrix.

(

〈x〉MS
g

∑q〈x〉MS
q

)

= Z2×2

(

〈x〉bare
g

∑q〈x〉bare
q

)

. (4.1)

For 〈x〉g the relevant matrix elements are calledZgg andZqq and the relation is

〈x〉MS
g = ZMS

baregg〈x〉
bare
g +[1−ZMS

bareqq]∑
q
〈x〉bare

q . (4.2)
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As a first step we will compute these factors perturbatively. This will provide us with a first estimate
of the factors and we will get insight in the renormalization process of this quantity. If we know
the renormalization conditions, a non-perturbative renormalization can follow. Since the smearing
of the operator should be included into the renormalization process, we will also try to use other
smearing techniques for the lattice computation, i.e. HEX or stout smearing, which can be easier
employed in a perturbative computation. Once the renormalization is complete we will be able to
give the first physical result for〈x〉g with fully active sea quarks.

The next step should be the computation of〈x〉g at physical pion mass using the recently
generated ensembles withNf = 2 twisted-mass-clover fermions [10]. For heavier quark masses the
continuum limit for this quantity can be studied.

Furthermore, the result can be used for the determination of the gluon contribution to the
nucleon spin, which at the moment is not known from the lattice. Moreover, itcould also be possible
to compute the gluon moment of other hadrons, e.g. the pion (cf. [8]).

Acknowledgments

We thank Carsten Urbach for discussion and help with the tmLQCD code [11], which has been
used for the computations. Latest developlments for this code were also presented at this conference
[12, 13]. This work has been supported in part by the DFG Sonderforschungsbereich/Transregio
SFB/TR9-03. B.K. is supported by the National Research Fund, Luxembourg.

References

[1] R. Devenish and A. Cooper-Sarkar.Deep Inelastic Scattering. Oxford University Press, 2004.

[2] J. Blümlein, H. Böttcher and A. Guffanti, Nucl. Phys. B774 (2007) 182 [hep-ph/0607200].

[3] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur.Phys. J. C63, 189 (2009)
[arXiv:0901.0002 [hep-ph]].

[4] C. Alexandrou, M. Constantinou, S. Dinter, V. Drach, K. Jansen, C. Kallidonis and G. Koutsou, Phys.
Rev. D88 (2013) 014509 [arXiv:1303.5979 [hep-lat]].

[5] C. Alexandrou, M. Constantinou, S. Dinter, V. Drach, K. Hadjiyiannakou, K. Jansen, G. Koutsou and
A. Strelchenkoet al., PoS LATTICE2012 (2012) 163 [arXiv:1211.4447 [hep-lat]].

[6] R. Horsleyet al. [QCDSF and UKQCD Collaborations], Phys. Lett. B714 (2012) 312
[arXiv:1205.6410 [hep-lat]].

[7] K. F. Liu, M. Deka, T. Doi, Y. B. Yang, B. Chakraborty, Y. Chen, S. J. Dong and T. Draperet al., PoS
LATTICE 2011 (2011) 164 [arXiv:1203.6388 [hep-ph]].

[8] H. B. Meyer and J. W. Negele, Phys. Rev. D77 (2008) 037501 [arXiv:0707.3225 [hep-lat]].

[9] A. Hasenfratz and F. Knechtli, Phys. Rev. D64 (2001) 034504 [hep-lat/0103029].

[10] A. Abdel-Rehimet al. [ETM Collaboration], PoS LATTICE2013 (2013) 264, to be published.

[11] K. Jansen and C. Urbach, Comput. Phys. Commun.180 (2009) 2717 [arXiv:0905.3331 [hep-lat]].

[12] C. Urbach, PoS LATTICE2013 (2013) 414, to be published.

[13] B. Kostrzewa, PoS LATTICE2013 (2013) 416, to be published.

7


