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We present results on the nucleon tensor form factors and first moment of the transversity distri-

bution using maximally twisted mass fermions. We analyze two Nf=2+1+1 ensembles having

pion masses of 213 MeV and 373 MeV with lattice spacinga = 0.064 fm anda = 0.082 fm,

respectively. First results using anNf=2 ensemble of twisted mass fermions with a clover term

at a physical pion mass and lattice spacinga = 0.094 fm are also presented. The renormaliza-

tion function for the local tensor form factors is evaluatednon-perturbatively with a perturbative

subtraction ofO(a2)-terms, while for the first moment of the transversity we use aperturbative

estimate. Results are given in theMS scheme at a scale ofµ = 2 GeV, and are compared with

recent results obtained using different discretization schemes.
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1. Introduction

Lattice QCD calculations of observables related to the structure of baryonsare now being
carried out using simulations of the theory with pion mass close or even at the physical value [1, 2,
3, 4, 5]. Nucleon observables that are under intense experimental study are the Generalized Parton
Distributions (GPDs), which encode important information on nucleon structure. The GPDs can
be accessed in high energy processes where QCD factorization applies, and the amplitude can be
written in terms of the convolution of a hard perturbative kernel with the GPDs. The twist-2 GPDs,
which are studied in this paper, are defined by the matrix element:

FΓ(x,ξ ,q2) =
1
2

∫
dλ
2π

eixλ 〈p′|ψ̄(−λn/2)ΓPe
ig

λ/2∫

−λ/2
dα n·A(nα)

ψ(λn/2)|p〉 , (1.1)

where|p′〉 and|p〉 are one-particle states,q= p′− p, ξ = −n ·q/2, x is the momentum fraction,
andn is a light-like vector collinear toP = (p+ p′)/2 and such thatP · n = 1. The gauge link
P exp(. . .) is necessary for gauge invariance. In model calculations it is often set toone, which
amounts to working with QCD in the light-like gaugeA · n = 0, but on the lattice such a gauge
fixing is not necessary. In the forward limit, for whichξ = 0 andq2 = 0, GPDs reduce to the
ordinary parton distributions, namely the longitudinal momentum,q(x), the helicity,∆q(x), and
transversity,δq(x), distributions; in this paper we restrict to the transverity which represents the
net number of quarks with transverse polarization in a transversely polarized nucleon. The first few
Mellin moments of the transversity parton distribution are of particular interest

〈xn〉δq =
∫ 1

0
dxxn[δq(x)+(−1)n+1δ q̄(x)

]
, δq= q⊤+q⊥ . (1.2)

The matrix elements of the light-cone operator as defined in Eq. (1.1) cannotbe extracted from
correlators in euclidean lattice QCD but an operator product expansion can be carried out leading
to

O
µνµ1...µn−1
⊤ = q̄σ [µ {ν ] iDµ1 . . . iDµn−1}q. (1.3)

The curly brackets represent a symmetrization over indices and subtraction of traces, while the
square brackets represent antisymmetrization over indices. Here we study the casesn = 0, 1,
which amount to calculating the local and one-derivative tensor currents, respectively. The ma-
trix elements of these operators are parameterized in terms of the generalizedform factors (GFFs)
AT10, BT10, ÃT10 andAT20, BT20, ÃT20, B̃T21 depending only onq2 = (p′− p)2:

〈〈q(0)iσ µνq(0)〉〉 = 〈〈iσ µν〉〉AT10(q
2) + 〈〈

γ [µ∆ν ]

2mN
〉〉BT10(q

2)+ 〈〈
P
[µ∆ν ]

m2
N

〉〉 ÃT10(q
2) , (1.4)

〈〈q(0)Oµνµ1
T (0)q(0)〉〉=AµνSνµ1

{
〈〈iσ µνP

µ1〉〉AT20(q
2)+ 〈〈

γ [µ∆ν ]

2mN
P

µ1〉〉BT20(q
2)

+ 〈〈
P
[µ∆ν ]

m2
N

P
µ1〉〉 ÃT20(q

2)+ 〈〈
γ [µP

ν ]

mN
∆µ1〉〉 B̃T21(q

2)

}
. (1.5)

In the forward limit we can directly obtainAT10(0) = 〈1〉δq(x) andAT20(0) = 〈x〉δq(x).
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2. Evaluation on the lattice

In the present work we employ the twisted mass fermion (TMF) action withNf=2+1+1
dynamical quarks [20] and the Iwasaki improved gauge action. We also present results for an
ensemble ofNf=2 TMFs with a clover term and tree-level Symanzik gauge action. Using standard
techniques, the GFFs are extracted from dimensionless ratios of correlation functions, involving
two-point and three-point functions:

G(~q, t f − ti) = ∑
~xf

e−i(~xf−~xi)·~q Γ0
βα 〈Jα(t f ,~xf )Jβ (ti ,~xi)〉 , (2.1)

Gµνµ1(Γk,~q, t) = ∑
~x,~xf

ei(~x−~xi)·~q Γk
βα 〈Jα(t f ,~xf )O

µνµ1(t,~x)Jβ (ti ,~xi)〉 . (2.2)

We consider kinematics for which the final momentum~p′ = 0 and we employed the fixed-sink
method which requires a fixed time separation between the sink and the source, t f − ti . The projec-
tion matricesΓ0 andΓk are given by

Γ0 =
1
4
(1+ γ0) ,

3

∑
k=1

Γk = Γ0iγ5

3

∑
k=1

γk . (2.3)

We use the standard proton interpolating field with Gaussian smeared quark fields to increase the
overlap with the proton state and decrease overlap with excited states. We also apply APE-smearing
to the gauge fieldsUµ [5]. For matrix elements of isovector operators the disconnected contribu-
tions are zero up to lattice artifacts. For the isoscalar local tensor we have computed the discon-
nected diagram, which was found to be very small [7]. We form an appropriate ratio of three- and
two- functions

Rµν(Γk,~q, t) =
Gµν(Γk,~q, t)

G(~0, t f − ti)
×

√
G(~p, t f−t)G(~0, t − ti)G(~0, t f − ti)

G(~0, t f−t)G(~p, t − ti)G(~p, t f − ti)
, (2.4)

which is optimized because it does not contain potentially noisy two-point functions at large sep-
arations and because correlations between its different factors reduce the statistical noise. For
sufficiently large time separations of the source and the sink, this ratio becomes time-independent:

lim
t f−t→∞

lim
t−ti→∞

Rµν(Γλ ,~q, t) = Πµν(Γλ ,~q) . (2.5)

From the plateau values of the renormalized asymptotic ratioΠ(Γk,~q)R = ZΠ(Γk j,~q) the
nucleon matrix elements of the operators can be extracted. All values of~q corresponding to the
sameq2, the two choices of projector matricesΓ0 and∑k Γk and the relevant orientationsµ ,ν ,ρ of
the operators lead to an over-constrained system of equations, which is solved in the least-squares
sense via a singular value decomposition of the coefficient matrix. All quantities will be given in
Euclidean space withQ2 ≡−q2 being the Euclidean momentum transfer squared. Both projectors
Γ0 and∑k Γk are required to obtain all GFFs at non-zero momentum. Not all combinations ofthe
indicesµ , ν , µ1, are nessecary but we use all possibilities in order to increase statistics. In Fig. 1 we
show representative plateau for the ratios of the local tensor and the onederivative tensor operators
at β = 1.95, for different~Q-components.
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Figure 1: Rµν (upper two) andRµνµ1

for representative choices of the mo-
mentum. The solid lines with the bands
indicate the fitted ranges and plateau
values with their jackknife errors.

In this study we use sequential propaga-
tors already produced for the computation
of other nucleon matrix elements witht f −

ti ∼ 1 fm namely, for theNf=2+1+1 TMF
ensembles we use(t f − ti)/a=12 for β =

1.95, (t f − ti)/a=18 for β = 2.10 and for
the Nf=2 TMF with a clover term ensem-
ble, (t f − ti)/a=12, 14. For the latter en-
semble we find that the results are com-
patible within error bars with the data for
(t f − ti)/a=14 carrying larger statistical er-
rors. Thus, in the plots we only show the
results for(t f − ti)/a=12.

3. Renormalization

We determine the necessary renormalization functions for the local tensor operator non pertur-
batively in the RI′ scheme by employing a momentum source at the vertex [8], which leads to high
statistical accuracy and the evaluation of the vertex for any operator at no significant additional
computational cost. For the details of the non-perturbative renormalization see Ref. [9]. In the RI′

scheme the renormalization functions are determined in the chiral limit. For the renormalization
of our Nf=2+1+1 ensembles, ETMC has generatedNf=4 ensembles at the sameβ values, so
that the chiral limit can be taken. To improve our final estimates obtained from the continuum ex-
trapolation we have also computed the Green’s functions related to the renormalization functions
in perturbation theory up toO(a2) terms [10, 11]; we perform a perturbative subtraction of these
O(a2)-terms. This subtracts the leading cut-off effects yielding, in general, a weak dependence of
the renormalization functions on(ap)2 and the(ap)2 → 0 limit can be reliably taken; this can be
seen in Fig. 2 for the twoNf = 2+1+1 ensembles. As an example, we present the perturbative
terms that we subtract for the Iwasaki gluonic action and clover coefficient csw = 0:

a2 g2CF

16π2

[
0.2341µ2+

8
3

µ4
µ2 + log(a2 µ2)

(
7271
60000

µ2−
28891
30000

µ4
µ2

)]
,

(
µ4≡ ∑

i=1,4

µ4
i

)
.

For the renormalization functions of the one-derivative tensor operator, ZDT, we use our perturba-
tive results [9], which we compute for general action parameters. For Iwasaki gluons the expression
for ZDT in the RI′ scheme is:

ZDT(p= µ̄) = 1+
g2CF

16π2

(
2.3285−2.2795csw−1.0117c2

sw−3 log
(
a2 µ̄2)

)
. (3.1)

The renormalization functions are converted to theMS scheme at a scale ofµ = 2 GeV using
the conversion factors of Refs. [12, 13]. For the non-perturbativeestimate ofZT we first subtract
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the O(a2) perturbative terms and then apply the conversion to theMS scheme. The values of
ZMS

T (2GeV) which we use in this paper are given below, where the numbers in the parenthesis
correspond to the statistical error. As mentioned earlier, we use our perturbative results onZDT to
renormalize the traversity moment:

β = 1.95, Nf = 2+1+1 : ZT = 0.625(2), ZDT = 1.019

β = 2.10, Nf = 2+1+1 : ZT = 0.664(1), ZDT = 1.048

β = 2.10, Nf = 2,csw= 1.58 : ZT = 0.914(1), ZDT = 1.104

0 0.5 1 1.5 2 2.5 3 3.5 4
(a p)2

0.60
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0.80

0.90
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 M
S_
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1.00

Z
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Figure 2: ZMS
T (2GeV) for Nf=4 atβ = 1.95 (left) andβ = 2.10 (right). Black circles are the unsubtracted

data and the magenta diamonds the data after subtracting theperturbativeO(a2)-terms. The solid diamond
at (a p)2 = 0 is the value obtained after performing a linear extrapolation on the subtracted data.

4. Lattice Results

In this section we present results for the isovector and isoscalar nucleontensor chargegT ≡

AT10(0), the first moment of the transversity< x >δq≡ AT20(0), and compare with results using
other lattice discretizations. The renormalization functions for the isoscalar quantities receive a
contribution from a disconnected diagram. For the Wilson gluonic action, the correction was com-
puted perturbatively and found to be very small [14]. We assume that the correction is also small
for the gauge action used here and it is therefore neglected.

In Fig. 3 we collect our results for the tensor charge. These are computed at different lattice
spacings ranging froma∼ 0.1 fm to a∼ 0.06 fm, and at different volumes. As can be seen, there
are no sizable cut-off effects. A comparison with other lattice discretizations[15, 16, 17, 18] shows
that all lattice results are in good agreement.

In Fig. 4 we show as an example theQ2 dependence ofAu−d
T10 for the twisted mass results at

various pion masses (left panel) and a comparison with results fromNf=2 clover fermions [19]
(right panel). The latter correspond to a range of values formπ ∼ 600-1000 MeV. Despite the
difference in the pion masses, the results are in good agreement.

From the matrix elements of the one-derivative tensor operator we extractAT20, which is the
GFF that can be computed directly from the lattice data in the forward limit. In Fig. 5we collect our
data for the isovector case (left panel) and we compare with results fromNf=2 clover fermions [19]
(right panel). Opposed toAT10, we find thatAT20 is not the same at different values of the pion
mass. This could be due to the perturbative renormalization and/or a pion massdependence.

5. Conclusions

The tensor charge is evaluated for a range of pion masses including the physical value. Our
values are in agreement with the values obtained using clover and domain wallfermions. Neglect-
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Figure 3: The nucleon isovector (left panel) and isoscalar (right panel) tensor charge forNf=2 TMF with
a clover term (magenta asterisk) andNf=2+1+1 TMF (red circles), as well as results using other lattice
actions: green triangles correspond toNf=2+1 clover fermions [17], violet diamonds toNf=2+1+1 clover
on HISQ fermions [18], blue squares toNf=2+1 domain wall fermions [15] andNf=2 clover fermions [16].
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Figure 4: Left panel: The dependence ofAu−d
T10 on the momentum transfer,Q2, for i) Nf=2 TMF with a

clover term atmπ = 126 MeV (magenta diamonds), ii)Nf=2+1+1 TMF at mπ = 213 MeV (red circles)
and atmπ = 373 MeV (blue squares). Right panel: a comparison betweenNf=2+1+1 TMF atmπ = 373
MeV (blue squares) andNf=2 clover fermions atmπ ∼ 600 - 1000 MeV (orange circles) [16].

ing disconnected contributions we find at the physical pointgu
T = 0.87(4) andgd

T = 0.25(3). The
first moment of the transversity distribution is also computed for the first time in thechiral regime,
albeit with a perturbative renormalization. The next step will be to compute the non-perturbative
renormalization for the transversity distribution.
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