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1. Introduction

Electric dipole moment (EDM) enables us to identify the CP-violating (CPV) effect of funda-

mental particle in the standard model (SM) and also in beyond SM (BSM). The measurement of

neutron EDM (nEDM) has been attempted in experiment so far since 1960’s, however there has not

been any evidence of the experimental signal. The latest experimental upper bound is found to be

2.9×10−26 e·cm (90% CL)[1]. From the perturbative calculation for electroweak interaction, the

contribution to nEDM via CPV phase in CKM matrix is extremely small [2, 3, 4] as dN ∼ 10−32

e·cm, whose estimate is accounted by three loop order. On the other hand, the contribution from

strong interaction through the θ -term is roughly dN/θ̄ ∼ 10−17 e·cm according to the chiral quark

model and some effective theories. This is unnaturally small (strong CP problem).

In lattice QCD, we have several procedures to compute EDM non-perturbatively [5, 6, 7, 8, 9].

Lattice calculation including θ term is important for the estimate of hadronic contribution to EDM,

and furthermore its procedure is also applicable to extension toward BSM operator. However, in θ -

term, the statistical signal in Monte-Carlo calculation is extremely worse because EDM is strongly

suffered from the distribution of topological charge on gauge configurations, and thus, first of all,

we need accumulate much high statistics in this calculation.

In this proceedings, we present our recent study of EDM calculation using all-mode-averaging

(AMA) techniques to drastically reduce the statistical error [10, 11]. To suppress the lattice artifact

due to violation of chiral symmetry, we employ the domain-wall fermion (DWF) with N f = 2+

1 dynamical fermion. We use the same parameter sets in [10, 11]. In the computation of the

exact eigenmode, we adopt the implicitly restarted Lanczos algorithm for even-odd preconditioning

Hermitian DWF operator. In AMA algorithm, the approximation is set up to the truncated solver in

conjugate graduate (CG) algorithm with criteria of fixed norm of residual vector. Source points for

approximation are located in every 12 separation in spatial direction and 16 separation in temporal

direction, and thus total number of source location is NG = 32. In Table 1, one sees the other lattice

parameters we have used in this proceedings.

2. Measurement of EDM form factor

The EDM form factor F
n,p

3 is defined in the matrix element,

〈N(~p1,s1)|V
EM
µ |N(~p0,s0)〉θ = ūθ

N(~p1,s1)
[

F1(q
2)γµ +F2(q

2)
σµνqν

2mN

+Fθ
3 (q2)

γ5σµνqν

2mN

+Fθ
A (q2)(iq2γµγ5 −2mNqµγ5)

]

uθ
N(~p0,s0), (2.1)

where transfer momentum is defined as q = p1 − p0. We note that the first two form factors F1, F2

are associated with electromagnetic (EM) form factors and the last one FA has been known as

Table 1: Parameters used in numerical calculation. ∗The number in the bracket is statistics using ∆t = 8.

Size Ls mass #configs NG Nλ εAMA mπ (GeV) ∆t (fm)

243 ×64 16 0.005 751(187)∗ 32 400 0.003 0.33 1.37(0.91)∗

243 ×64 16 0.01 700(132)∗ 32 180 0.003 0.42 1.37(0.91)∗
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anapole form factor which is arisen from time-reversal (T) violating effect while preserving Parity

symmetry. Up to the next-to-leading order of θ , we represent the form factor with three-point

function, amplitude and mass [5, 6].

On the lattice, the three-point function is expanded by θ as

Cθ
Jµ
(t1, t, t0|p1, p0) = CJµ (t1, t, t0|p1, p0)

+ iθC
Q
Jµ
(t1, t, t0|p1, p0)+O(θ 2), (2.2)

In the above equation, the second term constructs the three-point function multiplied with topolog-

ical charge Q. We use numerically measured topological charge. Here the EM current is defined

as local bilinear form V EM
µ = q̄γµQcq with quark charge matrix Qc = diag(2/3,−1/3,−1/3). We

multiply local EM current by the renormalization factor Zv = 0.7178 whose value has been al-

ready obtained from non-perturbative renormalization [12]. Note that we ignore the disconnected

diagram contribution by assuming SU(3) isospin symmetry.

To compute form factor from three-point function, it is convenient to use the following ratio

Ri
µ(t1, t, t0|p1, p0) = K

Ci
Jµ
(t1, t, t0|p1, p0)

CG(t1 − t0, p1)

[

CL(t1 − t, p0)CG(t − t0, p1)CL(t1 − t0, p1)

CL(t1 − t, p1)CG(t − t0, p0)CL(t1 − t0, p0)

]1/2

(2.3)

with K =
√

(EN(~p1)+mN)(EN(~p0)+mN)/EN(~p1)EN(~p0), as used in [13]. EN(p) means the nu-

cleon energy in momentum p. The nucleon two-point function with smeared-source/smeared-sink

is CG(t, p) and smeared-source/local-sink is CL(t, p) in momentum p at time-slice t. Next, we

insert the explicit form of nucleon spinor matrix as shown in [5], in which CP-odd phase fac-

tor αN(θ) induced by θ -term appears in exponent proportional to γ5. Since this phase leads to

αN(θ) = θαN +O(θ 3), taking the trace of spinor after multiplication of γ5 for the nucleon two-

point function, αN is given as

tr
[

γ5C
Q

L/G
(t, p)

]

= ZL/G(p)ZG(p)
2mN

EN

αN

(

e−ENt +(−)be−EN(Lt−t)
)

+O(e−EN∗ ), (2.4)

with the normalization factor ZL/G for local (L) or Gauss smearing (G) function. The parameter

b indicates the boundary condition in temporal direction with Lt size; b = 0 is periodic case and

b = 1 is anti-periodic case.

Using the leading order of αN(θ) obtained from Eq.(2.4), and therefore comparing the leading

order and the next-to-leading order of θ , we directly obtain the formula of leading order Rµ(~p1,~p0)

and the next-to-leading order R
Q
µ (~p1,~p0). Hereafter we set up to ~p0 = ~p and ~p1 = 0 (and EN(~p0) =

EN , EN(~p1) = mN), and thus we have

Rµ(0,~p) =
1+ γ4

2

[

F1(q
2)γµ +F2(q

2)
σµνqν

2mN

] ip · γ +mN

2EN

, (2.5)

R
Q
µ (0,~p) =

αN

2
γ5

[

F1(q
2)γµ +F2(q

2)
σµνqν

2mN

] ip · γ +mN

2EN

+
1+ γ4

2

[

F1(q
2)γµ +F2(q

2)
σµνqν

2mN

]αmN

2EN

γ5

+
1+ γ4

2

[

F3(q
2)

γ5σµνqν

2mN

+FA(q
2)
(

iq2γµγ5 −2mNqµγ5

)] ip · γ +mN

2EN

. (2.6)

Following the above formula, to extract F3 term from the second equation, we need to subtract the

F1 and F2 terms obtained from the first equation.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
2
9
8

Neutron and proton EDM with N f = 2+1 domain-wall fermion Eigo Shintani

0.2 0.4 0.6 0.8

-q
2
 (GeV

2
)

0

0.02

0.04

N
eu

tr
o
n

0.2 0.4 0.6 0.8

-q
2
 (GeV

2
)

-1.2

-1

-0.8

-0.6

0.2 0.4 0.6 0.8

-q
2
 (GeV

2
)

0.4

0.6

0.8

1

P
ro

to
n

0.2 0.4 0.6 0.8

-q
2
 (GeV

2
)

1

1.5

2

G
e

n
G

m

n

G
e

p
G

m

p

Figure 1: The q2 dependence of Sach form factor with ∆t = 12 (circle) and ∆t = 8 (square) at m = 0.005.

3. Numerical results

First, we show the EM form factor F1, F2 obtained from Eq.(2.6). On this ensemble, we

achieve more improvement of statistical error of these observables by using AMA. The precise

measurement of EM form factor is necessary to subtract it from three-point function. Figure 1

shows the comparison of EM form factor with two time-separations, ∆t = 12 and ∆t = 8. These are

Sach form factor, which are combination of F1 and F2 as Ge(q
2) = F1(q

2)− q2

4mN
F2(q

2), Gm(q
2) =

F1(q
2) + F2(q

2). One sees that, compared to long time-separation (∆t = 12), the short time-

separation (∆t = 8) has a good precision which is improved as 60%–70%, especially for Gn
e . we

have factor 3 improvement. The total statistical error is less than 10% accuracy.

Next, we show the fitting result of αN obtained from O(θ) term of two point function Eq.(2.4)

in table 2. This indicates that the extracted results is not relied on the nucleon momentum and

smearing function as expected. The precision is also around 10%–20% even if there is finite mo-

mentum, and thus it turns out that AMA works well for CP-odd observable. We notice, however,

there is no appearent dependence on quark mass m, in contrast with expectation that CP-odd ob-

servable supresses approaching to the chiral limit. This may be because the quark mass is relatively

large for observing such behavior and also the large statistical error.

Since the EDM form factor is extracted from three-point function from subtraction of the term

proportional to αN multiplied with EM form factor, it is important to figure out which piece is the

dominant contribution. Here we decompose F3 to two pieces,

F3 = FQ +Fα . (3.1)
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Table 2: Table of fitting results of nucleon mass and CP-odd phase factor of nucleon propagator at four

different momenta in m = 0.005. Nucleon energy is a measured value with Gaussian smeared sink operator.

The subscripts “pt” and “gs” denote the function of sink operator in point type and Gaussian smeared type

respectively.

~p2(GeV2) EN(GeV) αN pt αN gs

0.000 1.1375(24) -0.322(41) -0.323(35)

0.205 1.2228(27) -0.296(38) -0.345(40)

0.410 1.3064(34) -0.314(49) -0.349(46)

0.615 1.3879(51) -0.324(70) -0.304(53)

0.821 1.4640(90) -0.449(204) -0.482(154)
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Figure 2: Time dependence of the two divided pieces of EDM form factor into FQ and a subtraction term

Fα . From left to right panels shown are the results at different insertion of momenta. Upper panel is result

for neutron and the bottom is result for proton at m = 0.005. Here we use the three-point function of µ = t

EM current.

FQ consists of θ -NLO three-point function, and Fα contains the subtraction term Fα . From Figure

2, one sees that Fα is high precision, whose statistical error is around 10%, otherwise FQ has rather

large fluctuation whose statistical error is more than 50%. This indicates that the signal of F3 almost

relies on the accuracy and stability of the three-point function (FQ).

To confirm the contribution of excited state contamination, we compare different time-separation

∆t with ∆= 12 and ∆t = 8 in Figure 3. One sees that the plateau region is almost overlapping within

1 σ statistical error, and also small ∆t has even better signal than ∆ = 12. Therefore the contam-

ination of excited state (for instance parity partner of nucleon) is almost negligible in this range.

Hereafter we only use the result of ∆t = 8 with fitting region [3,5].

In figure 4 we plot EDM obtained in this study and other lattice result including dynamical

fermions. We extrapolate EDM form factor with linear function of −q2, and to estimate the sys-
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Figure 3: The comparison of the normalized EDM form factor F3/2mN (e·fm) with different ∆t = 12 (circle)

and ∆t = 8 (cross) for neutron (top) and proton (bottom) in m = 0.005 at several momenta. This is result

using µ = t.

tematic uncertainties for fitting function, we compare two different fitting range for −q2, in which

this is four points with the largest −q2 or three points without the largest one. We add such sys-

tematic uncertainties into Figure 4 and show the total error. We obtain a finite neutron EDM value

in the lightest quark mass, and this precision is more than 60% uncertainties remaining. In the

total error, the statistical error is almost dominated, and it turns out that the reduction of statistical

noise in EDM is important. For mass-dependence, as well as αN , EDM is not suffered from the

suppression as quark mass is decreased. It will be same reason as not good distribution of topolog-

ical charge and response to quark mass is small. The magnitude in lattice QCD is roughly order

10 times larger than several model calculation (see [14] and reference therein), although the error

is still large. Keeping highly precise calculation is more important task to compare with model

prediction.

4. Summary

In this proceedings we present the recent study of EDM calculation in lattice QCD. AMA

algorithm is working well even in CP-odd observable. We have good signal of EDM form factor

from subtraction of EM form factor to three-point function at O(θ), and we obtain the finite value

of EDM after extrapolation to zero momentum limit. Currently the statistical error is still dominant

for nucleon EDM, and it means that AMA provides much benefit for the error reduction of this

observable. EDM calculation in physical points is next project to reach 10% precision of total error

for nucleon EDM in the near future.

Numerical calculations were performed using the RICC at RIKEN and the Ds cluster at FNAL.
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denotes the range of model calculation based on the baryon chiral perturbation theory.
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