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The hadronic vacuum polarization with twisted boundary conditions Christopher Aubin

1. Introduction

The leading-order hadronic (HLO) contribution to the anomalous magnetic moment of the
muon aµ = (g−2)/2 of the muon is given by the integral [1, 2]1

aHLO
µ = 4α

2
∫

∞

0
d p2 f (p2)

(
Π

em(0)−Π
em(p2)

)
, (1.1)

f (p2) = m2
µ p2Z3(p2)

1− p2Z(p2)

1+m2
µ p2Z2(p2)

,

Z(p2) =

√
(p2)2 +4m2

µ p2− p2

2m2
µ p2 ,

where mµ is the muon mass, and for non-zero momenta Πem(p2) is defined from the hadronic
contribution to the electromagnetic vacuum polarization Πem

µν(p):

Π
em
µν(p) =

(
p2

δµν − pµ pν

)
Π

em(p2) (1.2)

in momentum space. Here p is the euclidean momentum flowing through the vacuum polarization.
The integrand in Eq. (1.1) is dominated by momenta of order the muon mass; it typically looks

as shown in Fig. 1, with the peak located at p2 ≈ (mµ/2)2. The figure includes lattice data for the
vacuum polarization on the 643×144, 1/a = 3.35 GeV MILC Asqtad ensemble and the curve is a
[1,1] Padé fit to this data [4]. The resulting value for aµ is extremely sensitive to the fitting choice,
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Figure 1: The integrand in Eq. (1.1) for the 643×144, 1/a = 3.35 GeV MILC Asqtad ensemble. The data
shown are lattice results for the vacuum polarization and the curve is a [1,1] Padé fit to this data.

1For an overview of lattice computations of the muon anomalous magnetic moment, see Ref. [3] and references
therein.
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and while a fit may give a “good result” (i.e., may have a reasonable χ2 per degree of freedom), it
has been recently shown in Ref. [5] that such fits may not reproduce the correct result.

For a precision computation of this integral using lattice QCD, one would therefore like to
access the region of this peak. In a finite volume with periodic boundary conditions, for the smallest
available non-vanishing momentum to be at this peak, we require L≈ 25 fm, which is out of reach
of present lattice computations, if the lattice spacing a is chosen to be such that one is reasonably
close to the continuum limit. Clearly, a different method for reaching such small momenta is
needed, and here we discuss the use of twisted boundary conditions in order to vary momenta
arbitrarily in a finite volume. More details on this work can be found in Ref. [6].

2. Twisted Boundary Conditions

Given the electromagnetic current,

Jem
µ (x) = ∑

i
Qiqi(x)γµqi(x) , (2.1)

in which i runs over quark flavors, and quark qi has charge Qie, we wish to calculate the connected
part of the two-point function in a finite volume, but with an arbitrary choice of momentum.2 In
order to do this, we will employ quarks which satisfy twisted boundary conditions [7, 8, 9],

qt(x) = e−iθµ qt(x+ µ̂Lµ) , qt(x) = qt(x+ µ̂Lµ)eiθµ , (2.2)

where the subscript t indicates that the quark field qt obeys twisted boundary conditions, Lµ is
the linear size of the volume in the µ direction (µ̂ denotes the unit vector in the µ direction),
and θµ ∈ [0,2π) is the twist angle in that direction. For a plane wave u(p)eipx, the boundary
conditions (2.2) lead to the allowed values for the momenta (we set a = 1)

pµ =
2πnµ +θµ

Lµ

, nµ ∈ {0,1, . . . ,Lµ −1} . (2.3)

The twist angle can be chosen differently for the two quark lines in the connected part of the
vacuum polarization, resulting in a continuously variable momentum flowing through the diagram.
(Clearly, this trick does not work for the disconnected part.) If this momentum is chosen to be
of the form (2.3), then allowing θµ to vary over the range between 0 and 2π allows pµ to vary
continuously between 2πnµ/Lµ and 2π(nµ + 1)/Lµ . This momentum is realized if, for example,
we choose the anti-quark line in the vacuum polarization to satisfy periodic boundary conditions
(i.e., Eq. (2.2) with θµ = 0 for all µ), and the quark line twisted boundary conditions with twist
angles θµ .

Thus, we define two currents3

j+µ (x) =
1
2
[
q(x)γµUµ(x)qt(x+ µ̂)+q(x+ µ̂)γµU†

µ(x)qt(x)
]
, (2.4)

j−µ (x) =
1
2
[
qt(x)γµUµ(x)q(x+ µ̂)+qt(x+ µ̂)γµU†

µ(x)q(x)
]
. (2.5)

2This method is only useful for the connected part of the two-point function, although for a full calculation of the
photon vacuum polarization one must also look at the disconnected part.

3Note this is shown here for naïve quarks, but the arguments that follow would hold for any other discretization in
which a conserved vector current can be defined. For example, for staggered quarks we merely make the replacement
γµ → ηµ (x) and carry through the argument.

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
3
0
3

The hadronic vacuum polarization with twisted boundary conditions Christopher Aubin

In the case where we remove the twist (θµ = 0), these become equal to each other and the standard
conserved vector current used for lattice calculations.

We thus consider a mixed-action theory, where we have periodic sea quarks and (quenched)
twisted valence quarks. Formally this amounts to Ns quarks with periodic boundary conditions,
Nv quarks with twisted boundary conditions, and Nv ghost quarks with the same twisted boundary
conditions. The ghost quarks thus cancel the fermionic determinant of the twisted quarks. Then,
under the field transformations,

δq(x) = iα+(x)e−iθx/Lqt(x) , δq(x) =−iα−(x)eiθx/Lqt(x) , (2.6)

δqt(x) = iα−(x)eiθx/Lq(x) , δqt(x) =−iα+(x)e−iθx/Lq(x) ,

in which we abbreviate θx/L = ∑µ θµxµ/Lµ . We obtain, following the standard procedure, the
Ward-Takahashi Identity (WTI)

∑
µ

∂
−
µ

〈
j+µ (x) j−ν (y)

〉
+

1
2

δ (x− y)
〈
qt(y+ ν̂)γνU†

ν (y)qt(y)−q(y)γνUν(y)q(y+ ν̂)
〉

−1
2

δ (x− ν̂− y)
〈
q(y+ ν̂)γνU†

ν (y)q(y)−qt(y)γνUν(y)qt(y+ ν̂)
〉
= 0 , (2.7)

where ∂−µ is the backward lattice derivative, which for this paper always acts on x: ∂−µ f (x) =
f (x)− f (x− µ̂).

From this WTI, we define the vacuum polarization function as

Π
+−
µν (x− y) =

〈
j+µ (x) j−ν (y)

〉
− 1

4
δµνδ (x− y)

(〈
q(y)γνUν(y)q(y+ ν̂)−q(y+ ν̂)γνU†

ν (y)q(y)
〉

+
〈
qt(y)γνUν(y)qt(y+ ν̂)−qt(y+ ν̂)γνU†

ν (y)qt(y)
〉)

. (2.8)

In the case where we set the twist to zero in all directions, θµ = 0, this definition reduces to
the standard result for the vacuum polarization and is transverse. However in the twisted case,
Π+−

µν (x− y) is not transverse, but instead obeys the identity

∑
µ

∂
−
µ Π

+−
µν (x− y)+

1
4
(δ (x− y)+δ (x− ν̂− y))〈 jtν(y)− jν(y)〉= 0 , (2.9)

in which jν(x) and jtν(x) are currents defined by

jµ(x) =
1
2
(
q(x)γµUµ(x)q(x+ µ̂)+q(x+ µ̂)γµU†

µ(x)q(x)
)
, (2.10)

jtµ(x) =
1
2
(
qt(x)γµUµ(x)qt(x+ µ̂)+qt(x+ µ̂)γµU†

µ(x)qt(x)
)
.

It is important to note that other choices for Π+−
µν (x−y) are possible, but there will always be a non-

vanishing contact term in the WTI. The reason is that the contact term in Eq. (2.9) (or, equivalently,
in Eq. (2.7)) cannot be written as a total derivative, because the fact that q and qt fields satisfy
different boundary conditions breaks explicitly the isospin-like symmetry that otherwise would
exist. (For α± constant and θ = 0, Eq. (2.6) is an isospin-like symmetry of the action. As a
check, we see that for qt = q, i.e., for θ = 0, the contact term in Eq. (2.9) vanishes.) The resulting
non-transverse part of Π+−

µν therefore will need to be subtracted.
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3. Subtraction of contact term

In momentum space, we can decompose the vacuum polarization tensor as

Π
+−
µν (p̂) =

(
p̂2

δµν − p̂µ p̂ν

)
Π

+−(p̂2)+
δµν

a2 Xν(p̂) , p̂µ =
2
a

sin
(apµ

2

)
, (3.1)

and as such, we can determine Xν by using the WTI in momentum space,

i∑
µ

p̂µΠ
+−
µν (p̂) = −cos(apν/2)

〈
jtν(0)

〉
= i

p̂ν

a2 Xν(p̂) (3.2)

⇒ Xν(p̂) =
i
2

cot(apν/2)a3 〈 jtν(0)
〉
. (3.3)

There is a pole in Xν only when πnν +θν/2 is equal to an integer multiple of πLν/a, which is only
possible if θν = 0 for our allowed values of θν , but then this term would vanish because for θν = 0
the current from which Π+−

µν is constructed is conserved.
From dimensional analysis and axis-reversal symmetry, we see for small θ̂µ ≡ θµ/Lµ :〈

jtν(y)
〉
=−i

c
a2 θ̂ν

[
1+O(θ̂ 2)

]
. (3.4)

This must be odd under the interchange θ̂ν →−θ̂ν , and we see that this vanishes when we take
away the twisting (so that θν = 0 for all ν). In that case, Π+−

µν is conserved.
We can determine the vacuum polarization at one-loop in perturbation theory to get an estimate

for the size of this effect. In the twisted case, we have for Nc colors (again for a = 1),

Π
+−
µν (p) = −Nc

V ∑
k

tr

[
γµ

cos
(
kµ + pµ/2

)
i∑κ γκ sin(kκ + pκ)+m

γν

cos(kν + pν/2)
i∑λ γλ sinkκ +m

]
(3.5)

+
i
2

δµν

Nc

V ∑
k

tr

[
γν

(
sinkν

i∑κ γκ sinkκ +m
+

sin(kν + θ̂ν)

i∑κ γκ sin(kκ + θ̂κ)+m

)]
,

and the WTI,

i∑
µ

p̂µΠ
+−
µν (p) = −2icos(pν/2)

Nc

V ∑
k

(
sin(2kν)

∑κ sin2 kκ +m2
− sin(2(kν + θ̂ν))

∑κ sin2 (kκ + θ̂k)+m2

)
(3.6)

= 2icos(pν/2) θ̂

[
Nc

V ∑
k

(
2cos(2kν)

∑k sin2 kκ +m2
− sin2(2kν)

(∑k sin2 kκ +m2)2

)]
+O(θ̂ 3) .

For the MILC Asqtad ensemble with V = 483× 144 and a light quark mass of am = 0.0036, this
gives 〈

jtν(0)
〉
= (7.30×10−5)i

for a twist of θi = 0.28π in the spatial directions. Thus, generally this effect could be very small.
As the WTI holds on a configuration-by-configuration basis, it is straightforward to test Eq. (3.2)

numerically. In Fig 2(a) we show the ratio of the right-hand side to the left-hand side of Eq. (3.1).
This was performed on a typical configuration on an Asqtad MILC ensemble with L3 × T =

5
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Figure 2: Numerical tests of the WTI on a single configuration. In (a) we show the ratio of the left-hand
side and right-hand side of Eq. (3.2), while in (b) we show the ratio of the second term on the right-hand side
and the left-hand side of Eq. (3.1). Both cases are on a single configuration on an Asqtad MILC ensemble
with L3×T = 483×144, 1/a = 3.35 GeV, am = 0.0036, θx = θy = θz = 0.28π,θt = 0.

483× 144, 1/a = 3.35 GeV, am = 0.0036, θx = θy = θz = 0.28π,θt = 0. In this case, the stop-
ping residual for the conjugate gradient was 10−8. For small momenta this ratio is near one, and
at most deviates from one by about 0.3% for larger momenta. The ratio is expected to numerically
converge to one as the CG stopping criterion is reduced. As one is interested in using twisted
boundary conditions for lower momenta this does not appear to introduce a significant systematic.

In Fig 2(b) we plot the quantity
Xν(p̂)

a2Π
+−
νν (p̂)

(3.7)

on the same configuration as in Fig 2(a). For very small momenta, this counterterm can become
quite significant, especially in the primary region of interest. While averaging over configurations
seems to diminish this effect, this is still under investigation. Of course, even if averaging over
an ensemble reduces the effect of the counterterm, one must worry about the systematic error
introduced in such large cancellations during such averaging.

4. Conclusions

The use of twisted boundary conditions is promising in obtaining the connected portion of the
leading hadronic contribution to the muon anomalous magnetic moment. While the introduction of
twisted boundary conditions does not allow one to write a purely transverse vacuum polarization,
it is straightforward to subtract the term which arises due to the partial twisting of the quarks.
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Currently it appears as though averaging over an ensemble makes a large effect (on each con-
figuration) negligible. The reason for this is under investigation, and there is no guarantee that it
will be true for all ensembles. As such, when attempting to obtain a high-precision calculation of
the muon g− 2, it is imperative that one gets a measurement of the contact term that arises in the
vacuum polarization and subtract it if it is not negligible, as small errors in the low momentum
region can lead to large errors in the final determination of the muon g−2.
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