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1. Introduction

The experimental accuracy in B-physics measurements is being remarkably improved, mainly
thanks to the performance of LHCb. A reliable computation of the B-parameters BBd and BBs , as
well as other B-parameters appearing in extensions beyond the Standard Model (BSM) is essential
when constraining the CKM and BSM parameters, by combining experimental results and theory
predictions.

The b-quark is too heavy to be simulated directly on presently attainable lattice spacings. In
this study we use Heavy Quark Effective Theory (HQET), an expansion in inverse powers of the
heavy quark mass m, which is well suited to a non-perturbative treatment of the b-quark with con-
trolled systematic uncertainties. Since HQET is an effective theory, it can be renormalized at fixed
order in 1/m, by determining a finite number of parameters. At this order, the lattice-regularized
theory can be renormalized (i.e. it has a well defined continuum limit) and the parameters can be
determined by matching with QCD in a small volume (see [1] and notation therein).

In the present study we apply HQET to the computation of the B-parameters of the neutral B-
meson system. In order to reduce systematic uncertainties at the level of few percent, we investigate
the matching of HQET to QCD at O(1/m). Defining the static b-quark fields as H ≡ ψh +ψh̄ and
H̄ ≡ψh+ψ h̄, the HQET action and a generic (multiplicatively renormalizable) composite operator
read:

SHQET = a4
∑
x
{H̄γ0D0H−ωspin H̄σ ·BH︸ ︷︷ ︸

≡Ospin

− ωkin H̄
1
2

∇
2H︸ ︷︷ ︸

≡Okin

+ O(1/m2)}, (1.1)

OQCD = ZHQET
O {Ostat + ci

OO
1/m
i +O(1/m2)}, (1.2)

with {ωkin, ωspin, ci
O}= O(1/m) and ZHQET

O to be determined in the matching procedure.
As pointed out in [1], the path integral can be written as an ensemble average with respect to

the static action if, in the spirit of the expansion, O(1/m) terms are treated as operator insertions:

〈O〉QCD = ZHQET
O {〈Ostat〉stat +ωspin a4

∑
x
〈OstatOspin(x)〉stat +

+ ωkin a4
∑
x
〈OstatOkin(x)〉stat + ci

O〈O
1/m
i 〉stat +O(1/m2)}. (1.3)

The NHQET
O bare couplings ωkin, ωspin, ZHQET

O , ci
O , . . . of HQET at O(1/m) can be determined by

imposing matching conditions between suitably chosen operator correlation functions Φ
QCD
k (m,L)

and Φ
HQET
k (m,L), defined in small volume QCD and HQET respectively:

Φ
QCD
k (m,L) = Φ

HQET
k (m,L)+O

(
1

m2

)
, k = 1,2, . . . ,NHQET

O (1.4)

where the linear size L used in practice is L ≈ 0.4fm (the parameters of the QCD and HQET
Lagrangians are volume independent). The l.h.s. is a quantity defined in the continuum, and
computed in lattice QCD for lattice spacings a, chosen to be small enough so as to fulfill the
condition mba� 1. This ensures that in Φ

QCD
k (m,L) the b-quark can be simulated relativistically.

The r.h.s. is defined at finite lattice spacing a. Note that in HQET the relativistic b-quark is no more
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present and thus constraints on the size of a are absent. The connection to large volume where the
B-meson fits comfortably and physical observables (e.g. BBd , BBs , FBd , FBs) can be computed, is
done recursively in HQET using a step scaling function procedure in the Schrödinger Functional
(SF) scheme [1].

2. ∆B = 2 four-fermion operators in HQET

The BBq parameters which enter SM predictions are defined to be

BBq(µ) =
〈B̄0

q|O∆B=2
LL (µ)|Bq

0〉
8
3 F2

Bq
m2

Bq

with O∆B=2
LL = b̄γµ(1− γ5)q b̄γµ(1− γ5)q (2.1)

and similarly those which appear in models of new physics (the latter are related to matrix elements
of other ∆B = 2 four-fermion operators, see [2]).

In HQET, a complete basis of 6 dimensional ∆H = 2 operators (with two relativistic light
quarks ψ of the same flavor) is:

Q1 = OVV+AA Q1 = OVA+AV

Q2 = OSS+PP Q2 = OSP+PS

Q3 = OVV−AA Q3 = OVA−AV

Q4 = OSS−PP Q4 = OSP−PS

(2.2)

with OΓ1Γ2±Γ3Γ4 = [(ψ̄hΓ1ψ)(ψ̄h̄Γ2ψ) ± (ψ̄hΓ3ψ)(ψ̄h̄Γ4ψ)] (2.3)

where the Qi are parity even (PE) while Qi are parity odd (PO).
The static heavy quark action is invariant under spatial rotations H(3), rather than the usual

rotations H(4), and under the heavy quark spin symmetry (HQSS):

ψh(x) → eiαkΣk ψh(x)≡S (α)ψh(x) ψ̄h(x) → ψ̄h(x)e−iαkΣk ≡ ψ̄h(x)S (α)† (2.4)

where Σk =
1
2 εi jkσi j =

i
2 εi jkγiγ j, and ψh̄ and ψ̄h̄ transform analogously with βk independent of αk.

By using HQSS one can prove [3, 4] that with Wilson-like fermions 1 the new basis

Q′1 = Q1 Q′1 = Q1

Q′2 = Q1 +4Q2 Q′2 = Q1 +4Q2

Q′3 = Q3 +2Q4 Q′3 = Q3 +2Q4

Q′4 = Q3−2Q4 Q′4 = Q3−2Q4

(2.5)

simplifies the mixing pattern. For the PE sector we have:
Q′1
Q′2
Q′3
Q′4


R

=


Z1 0 0 0
0 Z2 0 0
0 0 Z3 0
0 0 0 Z4


1+


0 0 ∆1 0
0 0 0 ∆2

∆3 0 0 0
0 ∆4 0 0





Q′1
Q′2
Q′3
Q′4

 (2.6)

1i.e. standard or improved Wilson fermions or twisted mass fermions
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while, by using time reversal, one can show that the PO sector renormalizes multiplicatively [4].
With Ginsparg-Wilson fermions, both the PO and PE sectors renormalize multiplicatively, the

discrete axial transformation R5: ψ → γ5ψ , ψ̄ →−ψ̄γ5 beeing an exact symmetry which implies:

Q′1 → Q′1 Q′2 → Q′2 Q′3 → −Q′3 Q′4 → −Q′4
Q′1 → Q′1 Q′2 → Q′2 Q′3 → −Q′3 Q′4 → −Q′4

(2.7)

Here we will investigate the strategy to compute matrix elements of ∆B = 2 four-fermion op-
erators using the example of O∆B=2

LL . This operator is even under the axial transformation R5.
Consequently, in matching QCD to HQET, we need to consider only (Q′1)

R and (Q′2)
R. However,

when working with Wilson-like fermions, these two operators mix with Q′3 and Q′4 under renor-
malization. As explained in [4], a way out of this spurious mixing is the use of twisted mass QCD
at maximal twist (α = π/2), with ψ a component of an isospin doublet of light quarks. In this way
the operators Q′1 and Q′2 are mapped into Q′1 and Q′2 and the matrix elements can be computed
according to

〈B̄Q′R1 B〉Wilson = −i〈B̄Q′R1 B〉tmQCD 〈B̄Q′R2 B〉Wilson = −i〈B̄Q′R2 B〉tmQCD (2.8)

where B, B̄, B and B̄ are suitable source and sink operators for the B mesons and Q′1 and Q′2
renormalize multiplicatively and have the correct chiral properties. In [5, 6] the corresponding
renormalization constants and renormalization group running have been computed with N f = 0
and N f = 2 dynamical flavors. We leave for the moment the question open and we investigate the
structure of O(a) and O(1/m) terms.

3. O(a) improvement

We first consider the improvement terms in the massless limit. Using the equations of motion,
Fierz identities and the properties of heavy quark fields (including the local flavour transformation
ψh(x)→ eiη(x)ψh(x), ψ̄h(x)→ ψ̄h(x)e−iη(x) which is a symmetry of the static action) we obtain a
basis of independent dimension-7 PE operators:

γ j⊗D j γ jγ5⊗ γ5D j εi jk [γi⊗ γ jγ5Dk]

I⊗ γ jD j γ5⊗ γ jγ5D j εi jk [γiγ5⊗ γ jDk]

D j⊗ γ j γ5D j⊗ γ jγ5 εi jk [γiγ5D j⊗ γk]

γ jD j⊗ I γ jγ5D j⊗ γ5 εi jk [γiD j⊗ γkγ5]

(3.1)

where we have used the concise notation

Γi⊗Γ jDk ≡ (ψ̄hΓiψ)(ψ̄h̄Γ jDkψ), ΓiD j⊗Γk ≡ (ψ̄hΓiD jψ)(ψ̄h̄Γkψ) (3.2)

The (spatial) covariant derivative Di acts on the light quark field only, since local flavor conservation
in the static action forbids terms containing spatial derivatives of the heavy quark fields. We can
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now pass from these operators to a new set of 12 operators through the identities:

γi⊗ γi(γ ·D) = γi⊗Di− εi jk[γi⊗ γ jγ5Dk]

γiγ5⊗ γiγ5(γ ·D) = −γiγ5⊗ γ5Di + εi jk[γiγ5⊗ γ jDk]

γ0⊗ γ0(γ ·D) = −1⊗ γiDi

γ0γ5⊗ γ0γ5(γ ·D) = γ5⊗ γiγ5Di (3.3)

γi⊗ (γ ·D)γi = γi⊗Di + εi jk[γi⊗ γ jγ5Dk]

γiγ5⊗ (γ ·D)γiγ5 = γiγ5⊗ γ5Di + εi jk[γiγ5⊗ γ jDk]

plus the analogous ones with the scalar product (γ ·D) in the first bilinear.
We can then combine these twelve operators to obtain six with the same time reversal proper-

ties of Q′1 and Q′2:

δQ1 = γi⊗ γi(γ ·D)+ γi(γ ·D)⊗ γi

δQ2 = γiγ5⊗ γiγ5(γ ·D)+ γiγ5(γ ·D)⊗ γiγ5

δQ3 = γ0⊗ γ0(γ ·D)+ γ0(γ ·D)⊗ γ0

δQ4 = γ0γ5⊗ γ0γ5(γ ·D)+ γ0γ5(γ ·D)⊗ γ0γ5

δQ5 = γi⊗ (γ ·D)γi +(γ ·D)γi⊗ γi

δQ6 = γiγ5⊗ (γ ·D)γiγ5 +(γ ·D)γiγ5⊗ γiγ5

(3.4)

We now want to further constrain the form of the counterterms by using the remaining symme-
tries of the HQET action (namely H(3) rotations and HQSS). We will briefly sketch here the method
used to constrain the renormalization pattern of dimension-6 operators, presented in Appendix A
of [4] and extend it to include also the O(a) counterterms.

Let us consider the vector of operators ~Q and the vector of O(a) counterterms δ ~Q with n and
m components respectively. The components of ~Q can (in principle) mix with scale-dependent
coefficients, as well as with the counterterms δ ~Q with scale-independent coefficients. The n-vector
of (improved) renormalized operators ~QR will have the form

~QR = Z(~Q+ cδ ~Q) , (3.5)

where Z is an n×n renormalization matrix and c is an n×m mixing matrix. Let us now consider
a transformation S, realised at the level of operator vectors as a linear transformation with matrices
ΦS and Φ̃S (n×n and m×m, respectively), viz.

~Q → ΦS~Q , δ ~Q → Φ̃Sδ ~Q . (3.6)

If S is a symmetry transformation, a natural way of enforcing the symmetry at the level of the
renormalized theory is to require that renormalized operators transform in the same way as the
corresponding bare operators. This can be stated as

ΦS~QR = Z(ΦS~Q+ cΦ̃Sδ ~Q) . (3.7)

Consistency with Eq. (3.5) then requires

Z = ΦS Z Φ
−1
S , c = ΦS cΦ̃

−1
S , (3.8)
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where the two separate conditions on Z and c ensure that c is kept scale-independent. In practice,
one will choose a sufficiently large set of symmetry transformations {Si}, and impose Eqs. (3.8)
on generic Z and c matrices. If the matrices ΦSi have non-trivial blocks, the resulting constraints
will reduce the number of independent entries of the matrices Z and c. One can then look for a
basis which maximises the number of zeroes in the matrices, so that the final result is as simple as
possible. By choosing {Si}= {S1,R1,R3} (with S1 a HQSS rotation with ~α =−~β = {π/2,0,0}
and R1,3 rotations by π/2 around axes 1̂ and 3̂ respectively) one can show that the counterterm
structure of the first two operators Q′1 and Q′2 is the following:

Q′1

{
δQ′1 = δQ1−δQ2−δQ3 +δQ4

δQ′2 = δQ1 +δQ2 +δQ3 +δQ4
(3.9)

Q′2


δQ′3 = δQ1−δQ2 +3δQ3−3δQ4

δQ′4 = δQ3−δQ4 +δQ5 +δQ6

δQ′5 = δQ1 +δQ2−3δQ3−3δQ4

δQ′6 = δQ3 +δQ4−δQ5 +δQ6

(3.10)

with c a 2×6 matrix where only c11, c12, c23, c24, c25, c26 are non-zero.
Counterterms δQ′1, δQ′3 and δQ′4 are R5-even whereas δQ′2, δQ′5 and δQ′6 are R5-odd. Hence,

for lattice formulations with exact chiral symmetry, R5 implies that δQ′2, δQ′5 and δQ′6 do not
contribute and one is left with the sinlge counterterm δQ′1 for Q′1, and the two counterterms δQ′3,
δQ′4 for Q′2.

In [7] the one-loop perturbative matching including O(a) improvement is computed for domain-
wall fermions. We explicitly checked that our results agree with theirs for the operators δQ′1 and
δQ′3. However, the operator δQ′4 is missing in [7]. For Wilson fermions, our results are in agree-
ment with theirs, except for the two operators δQ′4 and δQ′6 which are again missing, cf. Appendix
B in [7]. Naturally the question arises: do these operators appear in perturbation theory only at two
loops?

Imposing HQSS, we obtain the following O(a) counterterms which are proportional to the
light quark mass m`:

b11 m` Q′1 +b13 m` Q′3 for Q′1
b22 m` Q′2 +b24 m` Q′4 for Q′2 (3.11)

In the case of Ginsparg-Wilson fermions, the spurionic symmetry (m`→−m`)×R5 implies that
b11 = b22 = 0. Our conclusions agree with the results of Ref. [7].

4. O(1/m) terms and conclusions

The 1/m terms in the expansion Eq. (1.3) are found by considering dimension-7 operators
with the common symmetries of Ostat and of the HQET action. These are H(3) cubic invariance,
parity, time reversal and flavor. HQSS and local flavor conservation are not symmetries of Ospin,
Okin respectively. The 1/m terms are obtained by taking the O(a) counterterms in Eq. (3.9), (3.10)

6
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with D replaced either by (D−←−D ) or by (D+
←−
D ) plus the four operators coming from Eq. (3.11).

The operators in Eq. (3.9), (3.10) are thus doubled to a total amount of twelve operators.
Again, with Ginsparg-Wilson fermions only half of the previous dimension-7 operators would

contribute, i.e. only those with the correct (m`→−m`)×R5 symmetry.
In order to compute the matrix element of O∆B=2

LL from HQET at O(1/m) we have thus to
consider the four dimension-6 operators Q′i in Eq. (2.5) plus the twelve dimension-7 operators
originating from Eq. (3.9), (3.10) while the four dimension-7 operators in Eq. (3.11) will amount
to as mass-dependent redefinition of the matching coefficients of the dimension-6 operators. This
will require 16 matching conditions through which, in the language of Eq. (1.3), (1.4), the 4 Zi

OLL

and the 12 ci
OLL

coefficients have to be determined. Moreover one has to determine mbare, ωkin,
ωspin which requires 3 further conditions2.

One can devise a procedure to find the first 16 matching conditions by using (in the notation
of [4]): different boundary operators ({γ5,γ5} or {γk,γk}) in the three point function containing the
4-fermion operator; different boundary-boundary two point functions f hl

1 , khl
1 ; different values of

the "SF momenta" θ ; different insertion times of the 4 fermion operator; different wave functions
for the boundary operators. We plan a one-loop computation in order to find an optimal set of
matching conditions.

As shown in [4], the symmetries of the lattice static action simplify the renormalization pattern
of dimension-6 operators in the PO sector. This could be exploited by using tmQCD at maximal
twist in order to compute the matrix elements of Q′1 and Q′2 trough the PO operators Q′1 and Q′2
(in the twisted basis), thus avoiding the mixing with Q′3 and Q′4; cf. eq. (2.8). The use of tmQCD
for the light quarks in the matching procedure (which is performed in small volume) would require
the introduction of the chirally rotated SF [8].

However, the simplification of the mixing pattern does not appear to carry over to the O(1/m)

terms since in the tmQCD framework there are 12 dimension-7 operators (i.e. the same number
as for standard Wilson fermions) having the same symmetries of Q′1 and Q′2 which have to be
included in the expansion Eq. (1.3).
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