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We show that the Tensor Renormalization Group (TRG) method can be applied to O(N) spin
models, principal chiral models and pure gauge theories (Z2, U(1) and SU(2)) on (hyper) cubic
lattices. We explain that contrarily to some common belief, it is very difficult to write compact
formulas expressing the blockspinning of lattice models. We show that in contrast to other ap-
proaches, the TRG formulation allows us to write exact blocking formulas with numerically con-
trollable truncations. The basic reason is that the TRG blocking separates neatly the degrees of
freedom inside the block and which are integrated over, from those kept to communicate with the
neighboring blocks. We argue that the TRG is a method that can handle large volumes, which is
crucial to approach quasi-conformal systems. The method can also get rid of some sign problems.
We discuss recent results regarding the critical properties of the 2D O(2) nonlinear sigma model
with complex β and chemical potential. As some of these results appeared in a recently published
paper (PRD 88, 056005) and two recent preprints (arXiv:1309.4963 and arXiv:1309.6623), these
proceedings rather emphasize the conceptual aspects of our ongoing effort.
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1. Introduction: blocking in configuration space is hard!

The block spin idea played a central role in the development of the RG method by the late
Ken Wilson. However, successful applications of the method were possible without requiring a nu-
merical implementation of the original idea. Blocking in configuration space is hard! Anyone who
believes that blocking is a straightforward procedure should attempt to write a simple algorithm
for the two-dimensional Ising model on a square lattice. For this model, blocking means replacing
four spins in a 2x2 square block by a single variable and write an effective energy function (or at
least some effective measure) for the new block variables.

A possible strategy is to consider 2 by 2 blocks in a A− B checkerboard. First, we con-
sider the B blocks as fixed backgrounds. We can then block spin in the A blocks. For instance,
Prob(φA = 4|φ background

i ) ∝ exp(β (4+∑
8
i=1 φ

background
i )) and more complicated expressions for the

intermediate values of φA. So far, we have blocked 1/2 of the total number of spins. The next step
is to try to block spin in the B blocks. Using the results of step 1 we can block spin in a given
B block surrounded by 4 A blocks but this set of 5 blocks is surrounded by 20 background spins.
We have blocked 5/8 of the total number of spins but the procedure becomes more intricate at each
step and finding the effective energy function is nontrivial. This is explained in more detail and
illustrated in [1]. The goal of this discussion is only to illustrate the generic difficulty of blocking
in configuration space.

It is possible to invent approximations where no new interactions are generated by the block-
ing process. Well-known examples are the Migdal-Kadanoff approximation [2, 3], the approximate
recursion formula [4] or other hierarchical approximations [5, 6]. However, in these examples, the
lack of reference to an exact procedure makes the systematic improvement of these approximations
difficult. In contrast, the TRG formulation allows us to write exact blocking formulas with numer-
ically controllable truncations. The basic reason is that the TRG blocking separates neatly the
degrees of freedom inside the block (which are integrated over), from those kept to communicate
with the neighboring blocks. The TRG approach of classical lattice models was introduced in Refs.
[7, 8, 9] motivated by tensor states developed in RG studies of quantum models [10]. Improved
methods to take into account the environment were proposed in Refs. [11, 12, 13]. In Ref. [1], we
showed that TRG methods can be applied to models studied by lattice gauge theorists, namely spin
models (O(N) and principal chiral models) and pure gauge models (Ising, U(1) and SU(2)). The
case of actions quadratic in Grassmann variables is briefly discussed in [14].

In these proceedings, we review the general procedure with the simple example of the 2D Ising
model (Sec. 2). More complicated examples (2D O(2) model and 3D Abelian gauge theories) are
discussed in Sec. 3. The TRG method has the potential to handle situations where there is a
sign problem. We briefly discuss recent results for spin models at complex β and with chemical
potential in Sec. 4. More details can be found in recent preprints[16, 15].

2. TRG blocking: it’s simple and exact!

The first step in the TRG formulation of spin models is to use character expansions and assign
degrees of freedom to the links. This first step is similar to what is done when we construct dual
formulations, however, we do not introduce dual variables here. In the case of the Ising model, we
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write for each link:

exp(βσ1σ2) = cosh(β )(1+
√

tanh(β )σ1
√

tanh(β )σ2) =

cosh(β ) ∑
n12=0,1

(
√

tanh(β )σ1
√

tanh(β )σ2)
n12 . (2.1)

We then regroup the four terms involving a given spin σi and sum over its two values ±1. The
results can be expressed in terms of a tensor: T (i)

xx′yy′ which can be visualized as a cross attached to
the site i with the four legs covering half of the four links attached to i. The entire lattice can be
tiled with such crosses. The horizontal indices x, x′ and vertical indices y, y′ take the values 0 and
1 as the index n12.

T (i)
xx′yy′ = fx fx′ fy fy′δ

(
mod[x+x′+y+y′,2]

)
, (2.2)

where f0 = 1 and f1 =
√

tanh(β ). The delta symbol is 1 if x+x′+y+y′ is zero modulo 2 and zero
otherwise. The partition function can be written exactly as

Z = (cosh(β ))2V Tr∏
i

T (i)
xx′yy′ , (2.3)

where Tr means contractions (sums over 0 and 1) over the links. This representation reproduces the
closed paths of the high temperature expansion. TRG blocking separates the degrees of freedom
inside the block which are integrated over, from those kept to communicate with the neighboring
blocks. This is represented graphically in Fig. 1.

xU

xD

yL yR

x1

x2

x1'

x2'

y1 y2

y1' y2'

X X'

Y

Y'

Figure 1: Graphical representation of T ′XX ′YY ′ .

Blocking defines a new rank-4 tensor T ′XX ′YY ′ where each index now takes four values. Its
explicit form is:

T ′X(x1,x2)X ′(x′1,x
′
2)Y (y1,y2)Y ′(y′1,y

′
2)
= (2.4)

∑
xU ,xD,xR,xL

Tx1xU y1yLTxU x′1y2yRTxDx′2yRy′2
Tx2xDyLy′1

,

where X(x2,x2) is a notation for the product states e. g. , X(0,0) = 1, X(1,1) = 2, X(1,0) =
3, X(0,1) = 4. The partition function can now be written exactly as

Z = (cosh(β ))2V Tr∏
2i

T ′(2i)
XX ′YY ′ , (2.5)
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where 2i denotes the sites of the coarser lattice with twice the lattice spacing of the original lattice.
The new expression has exactly the same form as the previous one except for the fact that the
indices run over more values.

In practice, this exact procedure will require too much memory after a few iterations and
one needs to introduce truncations. For the Ising model on square and cubic lattices, a truncation
method based on Higher Order SVD (HOTRG) gives very accurate results [13] . It was also noticed
that the Higher Order SVD [14] sharply singles out a surprisingly small subspace of dimension two.
In the two states limit, the transformation can be handled analytically yielding a value 0.964 for the
critical exponent ν much closer to the exact value 1 than 1.338 obtained in Migdal-Kadanoff ap-
proximations. Alternative blocking procedures that preserve the isotropy can improve the accuracy
to ν = 0.987 and 0.993.

3. More examples

The previous results can be generalized for the O(2) model. The partition function reads

Z =
∫

∏
i

dθi

2π
e

β ∑
<i j>

cos(θi−θ j)
. (3.1)

For each link, we can use

eβ cos(θi−θ j) =
+∞

∑
ni j=−∞

eini j(θi−θ j)Ini j(β ) , (3.2)

where the In are the modified Bessel functions of the first kind. In two dimensions, we obtain the
factorizable expression for the initial tensor:

T i
nix,nix′ ,niy,niy′

=
√

Inix(β )
√

Iniy(β )
√

Inix′ (β )
√

Iniy′ (β )δnix+niy,nix′+niy′ . (3.3)

The partition function and the blocking of the tensor are similar to the Ising model. The only
difference is that the sums run over the integers. As the In(β ) decay rapidly for large n and fixed
β (namely like 1/n!) there is no convergence issue. The generalization to higher dimensions is
straightforward. In Ref. [1], exact blocking formulas are also provided for the O(3) model and the
SU(2) principal chiral model.

The TRG method can also be used to handle gauge theories. We briefly describe the so-called
symmetric formulation for Abelian groups of Ref. [1] where the SU(2) case is also discussed. A
blocking procedure can be constructed by sequentially combining two cubes into one in each of
the directions. On the links in the blocked direction of the new lattice formed by two cubes, two
parallel A tensors form the new A′ tensor with product states (capital letters). Each tensor element
can be written as

A′X(x1,x2)X ′(x′1,x
′
2)Y (y1,y2)Y ′(y′1,y

′
2)
= Ax1x′1y1y′1

×Ax2x′2y2y′2
. (3.4)

On the new faces, two B̃ tensors and one A tensor form a new B̃′ tensor,

B̃′xx′Y (y1,y2)Y ′(y′1,y
′
2)Z(z1,z2,z3)Z′(z′1,z

′
2,z
′
3)
= ∑

x3,x′3

B̃xx3y1y′1z1z′1
Ax3x′3z3z′3

B̃x′3x′y2y′2z2z′2
.
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Figure 2: Illustration of the blocking procedure

At the center, two C tensors and one B̃ tensor form a new C′ tensor,

C′xx′Y (y1,y2,y3)Y ′(y′1,y
′
2,y
′
3)Z(z1,z2,z3)Z′(z′1,z

′
2,z
′
3)
= ∑

x2,x′2

Cxx2y1y′1z1z′1
B̃x2x′2y2y′2z2z′2

Cx′2x′y3y′3z3z′3
.

4. Work in progress and conclusions

Successful numerical applications were mentioned at the conference and are now reported
in recent preprints [15, 16]. For the 2D Ising at complex β (sign problem) and finite volume,
the partition function obtained with the TRG has been compared to the exact Onsager-Kaufman
solution. This is illustrated in Fig. 3. In general, the TRG can reach much larger values of Imβ

than MC. The only regime where caution needs to be used is in the vicinity of Fisher’s zeros
where all the contributions tend to cancel and the results are more sensitive to truncation effects.
This is explained at length in Ref. [16]. For the 2D O(2) at finite volume, the Fisher’s zero have
been obtained and compared with those obtained by MC and reweighting. The good agreement is
illustrated in Fig. 4. The critical properties of the 2D O(2) at large volume have been compared
with MC [15]. More recently, calculations for the 2D O(2) with chemical potential (another sign
problem) have been compared to results obtained with the worm algorithm [17] and an excellent
agreement was found [18]. We plan to study modulated phases in clock models with imaginary
chemical potential and compare with results presented at the conference [19].

In summary, the TRG method allows us to achieve the initial Wilsonian program (block spin-
ning) in an exact way. It applies to most classical lattice models. The HOTRG procedure allows
controllable truncations. Successful numerical implementations at large volumes and for models
with sign problem are very promising. In general the implementation of the HOTRG involves
computational demands that are very different from those of conventional MC methods. Namely,
memory considerations overwhelm CPU performance. On the analytical side, the somehow irreg-
ular behavior at intermediate truncations remains [20] to be understood. Many new applications
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Figure 3: The real part of the partition function for β = 0.3+ ix vs. x; red: result from HOTRG with 20
states; blue: exact solution (Onsager-Kaufmann).

Figure 4: Fisher’s zeros of XY model with L = 4, 8, 16, 32, 64 for 30 states compared to MC

are possible and we expect that the TRG will become a useful complement of the conventional MC
methods.
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