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I point out two of the subtleties referred to in the title. The first is that gauge-invariant magnetic
systems may realized under general circumstances, as suggested by a simple theorem. The second
subtlety is that care is needed to identify the field theory simulated by a cold-atomic lattice gauge
system. Though the simplest such model confines in 2+ 1 dimensions, it has non-relativistic
“gluon" excitations. Time-reversal invariance is spontaneously broken in this system. The con-
finement mechanism is related to an extra U(1) gauge invariance.There is a model, suggested long
ago by D. Rohlich and me, which is known to have relativistic spin waves. One of the outstanding
theoretical problems is a better determination of the energy-momentum relation of spin waves in
different magnetic gauge systems.
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1. Introduction

The rapid advance of ultracold-atom technology [1] has made atomic lattice systems with
dynamical gauge fields a serious prospect [2], [3], [4]. Such systems, first proposed by Horn [5] and
examined by Banks and Zaks [6] are Heisenberg-type magnets. They were generalized and given
the names “gauge magnets" [7] and “quantum-link models" [8], [9]. I use the first moniker here, but
they both mean the same thing. Several groups of people “discovered" gauge magnets (including D.
Rohrlich and me), without realizing they were not the first. Only a finite number of representations
of the gauge group exist. I think it is fair to include the remarkable proposed realization of the
Kogut-Susskind Hamiltonian lattice gauge theory [3] among these systems, because (for practical
reasons) the latter has a finite number of states per link.

I want to direct your attention to two subtle aspects of the subject. First, gauge magnets may
describe general models of hopping, tightly-bound particles. There is an old example [10], but this
is a special case of a more general theorem.

The second aspect is that non-Abelian gauge magnets are not necessarily Yang-Mills theories.
The simplest example of an SU(2)×U(1) gauge magnet has non-relativistic “gluons", whose La-
grangian can be found [7]. With a link term, there are two phases [6]; simple arguments indicate
that both phases confine (there may be a deconfined phase in 3+ 1 dimensions). Confinement,
however, can be understood in terms of the U(1) part of the gauge group - the quarks in this theory
must also have Abelian charge. There is a simple model with relativistic gluons; though its Yang-
Mills action may contain topological terms. We need a better understanding of how the energy of
a gauge magnet spin wave depends on its momentum. The coherent-state methods devised thus far
[7] cry out for improvement.

Nothing in the previous paragraph is controversial. Finding the field theory describing a quan-
tum spin system is an art, not a science. The accepted wisdom was that all translation-invariant
XXX spin-s chains are gapless. That wisdom was wrong. Haldane [11] argued that the integer-spin
case is the O(3) sigma model with θ = 0, which is gapped (but some integrable cases of integer
spin chains are gapless [12]).

Spin-wave methods can’t yield the phase diagram of a quantum system, but are useful for
understanding ultraviolet behavior. They help identifying the field theory, though not the vacuum.

2. Non-Abelian Gauge Magnets

The simplest SU(2) gauge magnets have four states on each link of a spacial latttice (x, j). Each
state corresponds to a component of a Dirac spinor. Operators γµ(x)satisfy the anticommutation
relations [γµ ,γν ]+ = 2δ µν , where µ,ν = 0,1,2,3. Products of these operators provide the closed
Lie algebra SU(4), which can also act on the one-link space of states. The other generators of
this SU(4) are the 4× 4 operators [γµ ,γν ]+ = 2δ µν , γ5 = −iγ0γ1γ2γ3, ρµ = −iγ5γµ and σ µν =

− i
4 [γ

µ ,γν ]− , Σb± = 1
4 εbc f σ c f ±σ0b, where b,c, f = 1,2,3.

The lattice gauge fields are quantum connection or parallel-transport operators, defined as

Vj(x) =U j(x)+α j(x)U5
j (x) = [γ0

j (x)⊗1l− i~γ j(x) ·⊗~τ]+α j(x)[ρ0
j (x)⊗1l− i~ρ j(x) ·⊗~τ],
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where α j(x) is an arbitrary complex number. The Hamiltonian describes an SU(2)×U(1) gauge
theory. It has the form

H = J ∑
x, j 6=k

Tr Vj(x)Vk(x+ ĵa)Vj(x+ k̂a)†Vk(x)† +K ∑
x, j

γ
5
j (x). (2.1)

The triplet of SU(2) Gauss’ law operators and the single U(1) Gauss’ law operators are

Gb(x) =
d

∑
j=1

[Σb +
j (x)−Σ

b−
j (x− ĵa) ], G5(x) =

d

∑
j=1

[γ5
j (x)− γ

5
j (x− ĵa) ], (2.2)

respectively. The Gauss’ law operators (2.2) commute with the Hamiltonian. Therefore the state
of the entire system Ψ(t) satisfies both Gb(x)Ψ(t) = Sb(x)Ψ(t) and G5Ψ(t) = S5(x)Ψ(t), where
the charges Sb(x) and S5(x) are determined by the initial state Ψ(0). Notice that (2.1) is nontrivial
when K = 0.

In Reference [10], a particular representation of the operators on links used was γ0 = (T++

T−)⊗1l,~γ = i(T+−T−)⊗2~S, where ~S is the spin of a particle which can fill one of two vacancies
on a link, and T± moves the particle between the two vacancies. The particles are SU(2) rishons,
described for SU(N) gauge magnets in [9]. The motivation of introducing these particles in Refer-
ence [10] was to show how gauge magnets could arise in the low-energy limit of hopping particles
on a lattice. A pictorial representation is:

x ~ n x+ ĵa n ~
T+

@
�

T−

�
@

where the solid circle is the spinning particle and the empty circle is a vacancy. This pictorial
representation shows that the SU(2) and U(1) Gauss’ law are restrictions on the total spin and the
particle number, respectively, adjacent to a lattice vertex [10], [9]. The U(1) Gauss’ law condition,
for the case of no sources, means that the arrangement of particles around a site satisfies the “ice"
or “six-vertex" condition in the physical states spanning the Hilbert space. This means that adjacent
to one site x, only the following configurations (labeled 1 to 6) appear:

1 ~ ~ nn
2 ~ n ~n

3 ~ n n~
4 n ~ ~n

5 n ~ n~
6 n n ~~.

If a color source is present at x, then the number of adjacent particles is one or three and the spin
state of the source and the adjacent particles is a singlet.
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3. The hopping-parameter expansion

The Hubbard model has a lattice Hamiltonian with nearest-neighbor hopping spin-1/2 parti-
cles, with a local Coulomb interaction. For half-filling, with a repulsive Coulomb term, perturbation
theory in the hopping term yields an effective Heisenberg antiferromagnet.

There is a similar mechanism to produce a gauge magnet from a lattice model of hopping
particles, in the low-energy limit [10]. Consider a (not necessarily regular) lattice of sites, at which
a particle may sit. Suppose the particle is has a vector index, making a vector N-plet. The particle
creation and annihilation operators at a site j can be written as c†

j,α and c j,α , where α = 1, . . . , N.
The spin or isospin at a site j is Sa

j = ∑αβ c†
j,α(S

a)αβ c j,β , where the N×N matrices (Sa)αβ are
generators of the symmetry group. The lattice is subdivided into cells or “bags" on the lattice,
labeled by F . These cells are connected sets of sites. The sets are disjoint, covering the entire
lattice. Each cell is surrounded by a red boundary in the figure:

The Hamiltonian has a nearest-neighbor hopping term, with hopping parameter t and a term
acting on each cell F of the lattice:

H =−t ∑
〈i, j〉

∑
α

c†
i,αc j,α +U ∑

F
VF , (3.1)

where VF must satisfy certain properties, namely: 1. the eigenvector of VF with the smallest eigen-
value (or one-cell ground state) is a singlet of the symmetry and 2. the eigenvectors of VF without
the lowest eigenvalue are multiplets of the symmetry, with eigenvalues at least of order 1. Let’s
label the different multiplets by the letter m = 1,2, . . . . There are a finite number of these, which
depends on the number of sites in one cell F . Since the multiplets are degenerate, the Hamiltonian
commutes with a projection operator Pm

F onto the multiplet labeled by m.
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Theorem: The effective Hamiltonian obtained in degenerate perturbation theory in t, is a gauge
magnet, where the Gauss law operator is

Ga
F = ∑

j∈F
Sa

j −∑
m

Pm
F

(
∑
j∈F

Sa
j

)
Pm

F ∼ (~D ·~E)a−ρ
a. (3.2)

Sketch of proof: This operator annihilates the lowest energy states of the effective theory, provided
t � U . The degenerate multiplets are color sources. Gauss’ law Ga

FΨ = 0 is tautological (it is
true by definition). The commutation relations of the operators (3.2) are precisely what generators
of gauge transformations must satisfy. Finally, taking the low-energy limit means that (3.2) will
commute with the effective Hamiltonian. This effective Hamiltonian will have terms of order
tm/Um−1 on polygons (plaquettes) with m sides. A gauge-invariant matter coupling may appear at
order t2/U . Note: for the simplest gauge magnets, the role of the cell F is played by the set of
particle vacancies adjacent to a lattice site.

The main implication of the theorem is that gauge invariance is nothing special. The theorem
does not guarantee that gauge invariance is truly dynamical, i.e., the spin waves of the effective
theory have the quantum numbers of gluons1. Nonetheless, it does suggest that dynamical gauge
invariance, e.g., that of Reference [10], can occur in a variety of contexts.

I should mention that there is an alternative proposal for producing gauge magnets from
Hubbard-type cold-atomic systems [13].

4. Confinement and U(1) gauge symmetry

Suppose a single static quark is at x. Then Gauss’ law implies that the number of particles on
the link vacancies adjacent to x is one or three (so that total spin a singlet).

Let’s consider the limit of (2.1) as K → −∞. In this limit, only vertex 4 has finite energy.
Notice that keeping only one such vertex breaks parity. This means that a quark must produce
a line of vertices going to the boundary (or an antiquark, if present) each of which has energy of
order K. Hence quarks are confined. In the illustration below, a quark-antiquark pair forces a line of
vertices other than vertex 4 to connect the sources. Thus confinement occurs with a string tension
of order |K|/a [4].

n
~

~
n

n ~
~

n
n

~
~

n
n

~
~

n
n

~
~

~
n
~ n

~
~

n
Similarly, in the limit that K → +∞, vertex 3 is dominant and a similar mechanism produces
confinement.

This confinement mechanism is inherently Abelian. The argument works in U(1) theories with
electric charges but no quarks. As |K/J| decreases, there can be a phase transition to a phase in
which one type of vertex is no longer longer frozen into the system. It may be that this is the

1Indeed, Alessio Celi, Luca Tagliacozzo and I found an example where gauge invariance is not dynamical (unpub-
lished).
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transition has been already found [6]. Is the second phase deconfined phase? I think it is clear that
the answer is no. The reason is that discrete rotation invariance is broken, in the same way that
this happens in quantum-dimer models [14], which also have a U(1) gauge invariance. There can
be special choices of K/J for which the correlation length becomes infinity where deconfinement
occurs, but these are not generic.

5. Spin-wave frequency and wavelength

The simplest model of the type (2.1) is with α j(x) = 0 everywhere:

H = J ∑
x, j 6=k

Tr U j(x)Uk(x+ ĵa)U j(x+ k̂a)†Uk(x)† +K ∑
x, j

γ
5
j (x). (5.1)

A way to study spin waves is to find the Heisenberg equation of motion i∂tB = [H,B] of a local
operator B, defined on a single link. If γµ and ρµ are replaced, in the definition of U j and U5

j (x),
by the classical variables mµ and nµ respectively, with n ·n = m ·m = 1, m ·n = 0, these equations
for mµ and nµ follow from the classical action [7], [15]:

S = ∑
x, j

s
∫

dt
∫

∞

0
du εαβ µν nα

j mβ

j

(
∂nµ

j

∂ t

∂nν
j

∂u
+

∂mµ

j

∂ t

∂mν
j

∂u

)
− J ∑

x, j 6=k
Tr U j(x, t)Uk(x+ ĵa, t)U j(x+ k̂a, t)†Uk(x, t)†, (5.2)

with spin s = 1/2. The first term in (5.2) is the Wess-Zumino action for relativistic spin [15]. If
the equations of motion are linearized, the spin wave frequency E in terms of its wave number p
is |E|= 4Jp2. There is spontaneous symmetry breaking of of time-reversal symmetry, just as for a
ferromagnet. The action (5.2) is first-order in time derivatives. Thus, at least in the semiclassical
approximation, the spin waves are not Yang-Mills gluons, but nonrelativistic gauge Bosons. If the
term K ∑γ5 is included, this action is no longer sufficient to describe spin waves. The Heisen-
berg equations of motion still indicate a nonrelativistic relation between energy and momentum,
however.

There is a gauge magnet with relativistic gluons [7]. In 2+1 dimensions, it has the form

H = J1 ∑
x1+x2 even

Tr UUUU + J2 ∑
x1+x2 odd

Tr U5U5U5U5, (5.3)

where each term is on an elementary plaquette. This is a staggered model on a chessboard, with
one type of term on red plaquettes, the other on black plaquettes. There is a similar model version
in higher dimensions too. The spin waves are similar to those of a one-dimensional spin chain [16],
and have speed of light c = 8

√
|J1J2| and mass gap m = |J1−J2|

8|J1J2| , respectively. This model has been
speculated to be a Yang-Mills theory with a Chern-Simons term in 2+1 dimensions [7].

6. Conclusions

I’ve tried to make two points. The first is that gauge magnets may be ubiquitous. It is fun
to speculate that gauge invariance in particle physics arises this way, but I think not (a symmetry
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principle, like supersymmetry, is needed to give all the gauge bosons the same speed of light). The
second point is that better methods are needed for identifying the quantum field theory described
by a gauge magnet.

Coherent state methods [7] need to be generalized. The formalism used thus far does not
properly acommodate all the observables. Perhaps a Holstein-Primakoff method, analogous to that
used for SU(2) ferromagnets and antiferromagnets exists. Such a method would go a long way
towards yielding a convincing correspondence with a field theory. Such methods, of course, are
only reliable only in the large-spin limit (in the models presented here, the spin is one-half). In the
short term, perhaps this limitation is not so important. The ultimate development of such methods
would be a correspondence between gauge magnets and gauge field theories similar to Haldane’s
correspondence between spin chains and the O(3) sigma model [11].

Acknowledgements: I would like to mention that Daniel Rohrlich first noticed there are also
relativistic spin waves in (5.1), which are the photons of the U(1) gauge symmetry (though we did
not think about this symmetry, at that time). I also am grateful for Alessio Celi, Luca Tagliacozzo
and Maciej Lewenstein for teaching me about many of the advances which have occured recently
in this subject. I thank Benni Reznik and Yanick Meurice for useful comments. Finally, I thank
Axel Cortés Cubero for recent discussions about the relativistic model (5.3).
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