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with spontaneous symmetry breaking and a Higgs-like mechanism, appears to be a possibility.
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1. Introduction

A covariantly gauge-fixed Yang–Mills (YM) theory is defined by two parameters, the trans-
verse gauge coupling g, and the gauge-fixing parameter ξ , or, equivalently, the longitudinal gauge
coupling g̃ defined by g̃2 = ξ g2. In perturbation theory, both g and g̃ are asymptotically free. Of
course, the beta function for g is independent of g̃, and usually one is not concerned with the dy-
namics associated with the coupling g̃. BRST symmetry guarantees that one can consistently define
a projection onto gauge-invariant correlation functions, and that the physics defined by these corre-
lation functions is independent of the coupling g̃. Nevertheless, the fact that g̃ is also asymptotically
free suggests that dynamics in the longtitudinal sector may be non-trivial. Here, the question we
will ask is whether these heuristic observations can be put on a solid footing, and, if so, whether
the standard lore, that the physics of the transverse degrees of freedom is always independent of
what happens in the longitudinal sector, is indeed inescapable. We will argue that it is not [1].

The first task is to formulate the gauge-fixed theory non-perturbatively. We start from a YM
theory on the lattice, where no gauge fixing is required. One may then try to gauge-fix this theory
rigorously following the textbook procedure, imposing BRST symmetry of the gauge-fixed theory
on the lattice [2]. However, it was found that this does not work: the gauge-fixed partition function
(as well as the unnormalized expectation values of gauge-invariant operators) vanishes identically,
as can be proven using BRST symmetry [3]. The physical explanation is that the presence of Gribov
copies in the gauge-fixed theory allows the integrand of the path integral to become negative, with
BRST symmetry enforcing an exact cancelation. In fact, this already happens if one integrates only
over the gauge degrees of freedom and the ghosts, while keeping the transverse gauge field fixed,
i.e., it happens on each orbit in the space of gauge-field configurations.

The no-go theorem of Ref. [3] can be avoided if we only partially fix the gauge, leaving a
subgroup H of the gauge group G containing minimally the Cartan subgroup unfixed [1, 4, 5, 6].
We will review this observation, for the case G= SU(2) and H =U(1), in Sec. 2 below. We will see
that the restriction of this “equivariantly” gauge-fixed theory to the trivial orbit is an example of a
topological field theory (TFT). The interesting question then arises whether spontaneous symmetry
breaking can take place in a TFT. In Sec. 3, we show that in a toy model, this is indeed the case. We
then report on the potential consequences of this observation for the gauge-fixed SU(2) YM theory
in Sec. 4, arguing that, contrary to standard lore, there is no logical argument excluding a phase
in which the longitudinal dynamics does in fact affect the physics of the theory. In the mean-field
approximation, we find evidence that such a phase may indeed exist. Assuming that such a phase
exists, we discuss future explorations of this novel scenario in Sec. 5.

2. Equivariant BRST symmetry and the SU(2)/U(1) coset theory

Standard gauge fixing works by inserting into the unfixed SU(2) YM theory, with partition
function

Z =
∫
[dU ]exp[−Sinv(U)], (2.1)

the constant
constant = Zgf(U,ξ ) =

∫
[dφ ][dc][dc]exp[−Sgf(Uφ ,c,c)] . (2.2)
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Here ξ is the gauge-fixing parameter, φx ∈ SU(2), and the gauge transform of Ux,µ is Uφ

x,µ =

φxUx,µφ
†
x+µ̂

. Using BRST invariance of the gauge-fixing action Sgf and nilpotency of the BRST
transformations one can prove that indeed Zgf(U,ξ ) = constant, i.e., independent of U and ξ .
Unfortunately, this constant takes the one value that is not allowed: it vanishes [3].

In equivariant gauge fixing, only the coset SU(2)/U(1) is gauge-fixed.1 Taking the U(1)
subgroup to be generated by the third Pauli matrix τ3, we introduce ghosts C (and anti-ghosts C)
that are coset valued, i.e.,

C =C1τ1/2+C2τ2/2 , C =C1τ1/2+C2τ2/2 , (2.3)

and we impose the new BRST transformation sC = 0 instead of sC =−iC2, which is proportional to
τ3, and would thus take the transformed C field out of the coset. It is possible to extend the definition
of this new BRST transformation, to which we will refer as “equivariant” BRST (eBRST) to the
other fields such that for all fields s2(field) = δU(1)(field), with δU(1) a U(1) gauge transformation
(with parameter ∝ C2), so that s is nilpotent on any operator invariant under the unfixed group
U(1). A consequence is that, in order to maintain invariance under eBRST transformations, the
gauge-fixing action has to be of the form

Sgf(Uφ ,C,C) =
1

ξ g2 tr
(
F(Uφ )

)2
+2tr(CM(Uφ )C)−2ξ g2 tr

(
C2C2

)
. (2.4)

Here F(U) represents the choice of gauge, and M(U) is the corresponding Faddeev–Popov oper-
ator. The first two terms are also present in the standard case, but the four-ghost term is new, and
essential in order to maintain invariance under eBRST.

Insisting on Lorentz invariance, local U(1) invariance, and (power-counting) renormalizabil-
ity, the choice of F(U) is essentially unique. In continuum language, we choose

F ∼ Dµ(A)Wµ , Vµ =
1
2
(
W 1

µ τ1 +W 2
µ τ2 +Aµτ3

)
, (2.5)

with Uµ = exp(iVµ), and where Dµ(A) is the covariant derivative with respect to the U(1) subgroup.
For all details, we refer to Refs. [1, 5].

The key observation is that now the constant Zgf(U,ξ g2) does not depend on U or g̃2 = ξ g2

but also does not vanish. For any U , the path integral Zgf(U,ξ g2) 6= 0 defines a TFT. This leads to
an invariance theorem [4, 5],

〈O(U)〉unfixed = 〈O(U)〉eBRST , (2.6)

for any gauge-invariant operator O . The eBRST gauge-fixed theory is rigorously the same as the
unfixed theory when restricted to gauge-invariant correlation functions.

In possession of a non-perturbatively well-defined gauge-fixed YM theory, we can now ask
the question whether the gauge-fixing sector can have an effect on the physics, in contrast to the
standard lore. We begin by considering the TFT on the trivial orbit, i.e., the theory defined by

Zgf(1, g̃2) =
∫
[dφ ][dC][dC]exp[−Sgf(1φ ,C,C)] , (2.7)

Sgf =
1
g̃2 tr

(
F(1φ )

)2
+2tr(CM(1φ )C)−2g̃2 tr

(
C2C2

)
,

1For SU(2) this is the only nontrivial coset; for larger groups there are more possibilities [1, 5].
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with 1φ = φxφ
†
x+µ (on the lattice). This model, the “reduced model,” is in itself a strongly interacting

theory with an asymptotically free coupling g̃ [7]. It is still invariant under an eBRST symmetry
(in which φ transforms as sφ =−iCφ , and U = 1 does not), and moreover it is invariant under

φx→ hxφxg† , (2.8)

with hx ∈ U(1)L a local symmetry projecting φx onto the coset SU(2)/U(1), and g ∈ SU(2)R a
global symmetry (reminiscent of a custodial symmetry). Again, for details we refer to Ref. [1].

Forgetting for the moment that our reduced model is a TFT, one might ask whether, because
of the strong dynamics, SSB could take place. A possible order parameter is 〈φ †τ3φ〉, which is
invariant under the gauge symmetry U(1)L, but for which a non-zero value would signal SSB along
the pattern SU(2)R → U(1)R. This would correspond to a non-trivial minimum of the effective
potential

exp[−Veff(Ã)] =
∫
[dφ ][dC][dC]δ

(
Ã− 1

V ∑
x

φ
†
x τ3φx

)
exp[−Sgf(1φ ,C,C)] . (2.9)

However, remembering that Zgf is a TFT, an apparent paradox arises: the question is whether
Veff(Ã) can be non-trivial, given that dZgf/dg̃ = 0. In other words, can SSB ever take place in a
TFT? In order to address this question, we first consider a toy model.

3. A toy model

Let us consider the simple zero-dimensional field theory (a.k.a. integral)

Z =
1

2
√

π

∫
∞

−∞

dφ

∫
dcdcexp[− f 2(φ)/4+ c f ′(φ)c] , (3.1)

with f an arbitrary function going to +∞ (−∞) for φ →+∞ (−∞). This theory is invariant under a
“baby” BRST symmetry sφ = c, sc = 0, sc = f (φ)/2. By straight evaluation, we have that Z = 1.
The toy model is a “TFT” because Z does not depend on the choice of the function f .

Consider a specific example

f (φ) =
1
λ

(
φ

3− v2
φ
)
, λ , v real . (3.2)

The theory is now also invariant under a Z2 symmetry φ → −φ . The minima of the “classical
potential” f 2(φ)/4 are at v = 0 (unbroken Z2) and φ = ±v (SSB of Z2). However, the invariance
theorem would seem to imply that always 〈φ〉= 0, and therefore Z2 can never be broken!

Let us recall how one studies SSB. We first turn on a small, explicit symmetry-breaking term;
here we will choose Sseed =−εφ . We then take the infinite-volume limit, and only after that do we
take ε→ 0. The seed breaks not only Z2, but also the baby BRST symmetry of the toy model, which
therefore at ε 6= 0 is no longer a TFT. Of course, in our zero-dimensional field theory we cannot
take the volume to infinity, but we can define different “vacua” by considering the perturbative
expansion in λ around each of the three saddle points φ = ±v, 0. Using a subscript taking values
±v,0 to indicate quantities calculated in perturbation theory around a given saddle point, we find
(for ε → 0) that

〈φ〉v = v
(

1− 3
4

λ 2

v6 + . . .

)
. (3.3)
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We also find that Z±v = 1 and Z0 =−1 to all orders in λ , which sum up to Z = 1.
For ε > 0, the saddle-point approximation for Z, valid for small λ , prefers the minimum at

φ = v, thus breaking the symmetry. In any dimension larger than zero, the contribution of only one
of these saddle point would survive the thermodynamic limit, and for ε ↘ 0 it would be the one at
φ = v. The conclusion is that, for v2 > 0 in Eq. (3.2), indeed the toy model teaches us that SSB
can take place in a TFT! The lesson is that in order to probe SSB, a “seed" breaking the symmetry
explicitly has to be added to the theory. With the seed present, the invariance theorem no longer
applies, and it may or may not apply after appropriate limits have been taken.

The baby BRST symmetry remains unbroken around each of the saddle points. An order
parameter for SSB of BRST would have the form sX for some operator X , but one can prove that
〈sX〉v vanishes for all X (apart from terms proportional to ε).

4. The phase diagram in mean field

Now let us return to the reduced model of Eq. (2.7). We turn on a “magnetic” field h in the τ3

direction, coupled to the order parameter of Sec. 2:

Sseed =−h tr
(
τ3φ

†
τ3φ
)
. (4.1)

This addition breaks SU(2)R→U(1)R, and breaks eBRST symmetry, while respecting the U(1)L

unfixed gauge invariance. Therefore, for h 6= 0 the invariance theorem does not apply. Whether it
applies after taking first the infinite-volume limit and then h→ 0 is a dynamical question!

It is also a non-perturbative question. In Ref. [1] we studied this question by first integrating
out the ghosts in a 1/g̃2 expansion, and then applying a mean-field approximation to the resulting
effective action Seff(φ). In this approximation, we find that

1. Starting from the strong-coupling limit g̃ = ∞ there is a first-order phase transition at g̃ = g̃c,
with

〈φ †
τ3φ〉

{
= 0 , g̃ > g̃c ,

6= 0 , g̃ < g̃c .
(4.2)

2. When the gauge fields U are made dynamical again (by promoting SU(2)R to a local symme-
try), the Goldstone bosons associated with the SU(2)R→U(1)R symmetry breaking provide
longitudinal polarizations for the W gauge fields of Eq. (2.5), which become massive, while
the “photon” (the A field) stays massless.

3. We do not know the fate of eBRST symmetry. But we observe that φ †τ3φ is not the eBRST
variation of anything, so a vacuum expectation value for this operator does not imply SSB
of eBRST. We also note that the W ’s picking up a mass is not inconsistent with unbroken
eBRST symmetry if also the ghosts pick up an equal mass. The mass term

Smass = m2
W

∫
d4x tr

(
W 2

µ +2CC
)

(4.3)

is eBRST invariant.
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Figure 1: Two scenarios for the phase diagram. The confining phase A has a mass gap, while
the Coulomb (or Higgs) phase B has a massless photon. Left panel: the Coulomb phase ends
at some non-zero g̃ for g→ 0. Right panel: the Coulomb phase extends to the critical point at
g = g̃ = 0.

The consequences of our results in the reduced model for the full phase diagram are as follows. The
reduced-model transition is shown in Fig. 1 on the line g = 0; it corresponds to the value nearest to
g̃ = ∞. This transition extends into the diagram, separating a confining phase A, from a Higgs-like
phase B. In phase A there is a mass gap, as in the unfixed SU(2) YM theory, while phase B does
not have a mass gap, because the photon remains massless. There is thus a clear phase separation
also in the full theory. Semi-rigorous arguments on the other edges of the phase diagram suggest
that the phase transition line has to end up on the g = 0 edge, either ending at g̃ > 0 (left panel) or
ending at g̃ = 0 (right panel) [1].

If the real phase diagram would look like the left panel, the whole new phase B would be a
lattice artifact, since the continuum limit is at g = 0, g̃ = 0. If, however, it would look like the
right panel, this would imply the existence of a completely new continuum theory, with Higgs-like
properties, but no fundamental scalars, and with only asymptotically free couplings. In order to
reach this continuum limit, one should take the limit from within phase B, whereas the continuum
limit from within phase A would lead to the usual confining phase of SU(2) YM theory.

We do not know which of these two scenarios may apply, if any. However, our study of
the one-loop RG equations of Ref. [7] suggests that there are two different regimes. Each of the
asymptotically free couplings g and g̃ has a scale associated to it, Λ, respectively Λ̃. The RG
equations lead to two types of solutions: either Λ≈ Λ̃, or Λ� Λ̃. We conjecture that Λ≈ Λ̃, where
the transverse degrees of freedom dominate, is to be identified with the usual confinement phase A.
The other situation, Λ� Λ̃, corresponds to taking the continuum limit well inside phase B, where
the bare g̃ is much larger than the bare g. In this case, the non-perturbative physics associated
with Λ̃ would dominate, while g is still perturbative. Combined with our mean-field solution, this
suggests the possibility that in that case a W -boson mass mW ∼ gΛ̃ gets generated.
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5. Outlook

The scenario we presented raises a number of important questions:

1. Does the new phase B exist? A numerical study answering this may well be possible.

2. If it exists, does it extend to g = g̃ = 0? Here analytic studies will be necessary, and we
are hopeful that a combination of small-volume and large-N techniques (applied to the case
SU(N)/[SU(N−1)×U(1)]) may help.

3. Is the continuum limit in phase B unitary, if phase B exists and extends to the gaussian fixed
point? Is this the same as asking whether eBRST stays unbroken?

4. What distinguishes the two phases microscopically in the full theory? In the full theory, the
seed should break eBRST in order to avoid the invariance theorem, and this may bias the
sum over Gribov copies in the equivariantly gauge-fixed theory.

What we did show so far is that a scenario in which spontaneous symmetry breaking takes
place in a topological field theory is a logically consistent scenario. Despite the fact that the par-
tition function of a topological field theory does not depend on its couplings, and would thus not
appear to have any phase structure, we showed that this conclusion is not necessarily valid.

What we do not know is whether in equivariantly gauge-fixed SU(2) YM indeed a new phase,
originating from the spontaneous symmetry breaking in the trivial-orbit theory (the reduced model),
exists, even though mean field suggest it may. But if the reduced model does undergo spontaneous
symmetry breaking, the existence of a phase with a Higgs-like character (massive W ’s and a mass-
less photon) appears inescapable, since the Goldstone bosons will combine with the W fields to
make them massive.
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