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1. Introduction

The two-dimensional (2D) non-linear σ -model [1, 2] has been studied since long given that,
among others, it can be related to superconductivity and quantum Hall effect in condensed-matter
physics [3] and that it shares common features with non-Abelian gauge theories, such as asymptotic
freedom, instantons and spontaneous generation of mass. With the insertion of a θ−term, its action
SO(3)(βO(3),θ) in the continuum reads

SO(3)(βO(3),θ) =
1
2

βO(3)

∫
d2x [∂µ~σ(x)]2− iθSq , (1.1)

βO(3) being the inverse of the coupling constant, θ a real parameter, ~σ(x) a 3−component unit
vector and Sq the topological charge given by

Sq =
1

8π

∫
d2x ε

µν
ε

kmp
∂µσk(x)∂νσm(x)σp(x) . (1.2)

The spectrum of the model displays a massive triplet of scalars [4] at θ = 0. For θ 6= 0, a
singlet and triplet exist and, according to the Haldane conjecture [5], they become massless at
θ = π . Moreover, near θ = π the masses mS(θ) and mT (θ) of singlet and triplet respectively are
both proportional to (π−θ)2/3 [6]. This scenario has been verified — either for the triplet only or
in the region θ ≈ π — with various techniques that alleviate the sign problem associated with the
Sq term [7, 8, 9, 10].

The aim of our study is to allow for numerical simulations with generic real values of an angle
θ so to monitor the behaviour of mS(θ) and mT (θ) for any θ : this should be accomplished thanks
to a dual transformation relating the model in Eq.(1.1) with the 2D unconstrained SU(2) principal
chiral model described in the following sections.

2. The dual formulation - part I

In order to obtain the above-mentioned duality relation, let us first introduce the more familiar
2D SU(2) principal chiral model whose lattice partition function ZSU(2)(β ) is given by1

ZSU(2)(β ) =
∫

∏
n

DU(n) exp

(
β ∑

n′

2

∑
µ=1

Tr[U(n′)U†(n′+~eµ)]

)
, (2.1)

where β is the coupling, U(n) ∈ SU(2) and n = (n1,n2) with n1,n2 ∈ {1, . . . ,L}2. ZSU(2)(β ) can be
conveniently rewritten by introducing the link and plaquette variables V (n,µ) and V (n) defined as

V (n,µ) = U(n)U†(n+~eµ) , (2.2)

V (n) = V (n,1)V (n,2)V †(n−~e1,1)V †(n−~e2,2) , (2.3)

V (n) being parametrised as V (n) = exp[iλkωk(n)], with [λk,λm] = 2iεkmpλp and Tr(λkλm) = 2δkm.

1As a convention, labels “x" and “n" will denote position in the continuum and on the lattice respectively.
2Periodic boundary conditions will be assumed from here on.
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With these definitions, ZSU(2)(β ) can be rewritten as

ZSU(2)(β ) =
∫

∏
(n,µ)

dV (n,µ) exp

[
β ∑

(n,µ)
TrV (n,µ)

]
∏
n′

(
∑
r

d(r)χr[V (n′)]
)

, (2.4)

where the index r labels the representation, d(r) stands for the dimension of the representation r and
χr[V (n)] is the character of V (n) in the representation r. For future convenience, let us introduce
also the unconstrained SU(2) model defined as

Z(β ,R) =
∫

∏
(n,µ)

dV (n,µ) exp

[
β ∑

(n,µ)
TrV (n,µ)

]
∏
n′

sinRω(n′)
sinω(n′)

, (2.5)

where ω(n) = [∑3
k=1 ω2

k (n)]
1
2 and R being a real parameter.

The continuum version of the SU(2) principal chiral model stems from the limit β → +∞,
where all link matrices perform small fluctuations around the identity [12]. This allows to replace
the SU(2) δ−function with the Dirac δ−function, i.e.,

∑
r

d(r)χr[V (n)] −→
3

∏
k=1

∫
∞

−∞

e iαk(n)ωk(n) dαk(n) . (2.6)

The continuum limit is then achieved within the following 3-step procedure:

• let us introduce dimensional vector potentials Ak(n) as ωk(n) = aAk(n) and expand them in
powers of the lattice spacing a;

• substitute the SU(2) invariant measure with a flat measure and extend the integration region
over potentials Ak(n) to the non-compact region Ak(n) ∈ [−∞,∞];

• in the limit a→ 0, replace finite differences with derivatives and sums with integrals.

After some algebra and another change of variables reading

αk(x) = R(x) σk(x) ,
3

∑
k=1

σ
2
k (x) = 1 , (2.7)

the continuum limit of ZSU(2)(β ) is finally given by

ZSU(2)(β ) =
∫

∞

0
∏

x

R2(x)dR(x)
β (β 2 +R2(x))

∫
∏

x

[
δ

(
1−

3

∑
k=1

σ
2
k (x)

)
3

∏
k=1

dσk(x)

]
·

· exp
[
−
∫

d2x L [R(x),σk(x)]
]

, (2.8)

where

L [R(x),σk(x)] ≡
1
4

∂µ [R(x)σk(x)] Mkm
µν(x)∂ν [R(x)σm(x)] , (2.9)
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and

Mkm
µν(x) =

1
β 2 +R2(x)

[
δµν

(
β δkm +

R2(x)
β

σk(x)σm(x)
)

+ i R(x) ε
µν

ε
kmp

σp(x)
]

. (2.10)

If in Eq.(2.8) R(x) is made independent of x and the integration over this variable is skipped,
then not only the continuum limit of Z(β ,R) in Eq.(2.5) will be obtained, but it can also be proven
that the partition function ZO(3)(βO(3),θ) of the initial 2D non-linear σ -model is related to Z(β ,R)
itself via

ZO(3)(βO(3),θ) = [C(β ,R)]L
2
Z(β ,R) , (2.11)

with

C(β ,R) =
β

R

(
R2 +β

2)e−2β . (2.12)

The relations between the pairs of parameters (βO(3),θ) and (β ,R) are

βO(3) =
β

2
R2

R2 +β 2 , θ = 2πR
R2

R2 +β 2 . (2.13)

Consequently, in order to measure a given observable O(σ) in the 2D non-linear σ -model, it
is sufficient to “translate" it into its counterpart Õ(V ) expressed in terms of the degrees of freedom
of the 2D unconstrained principal chiral model, tune β and R so to keep β large, but in such a way
that they correspond to the desired values of βO(3) and θ , measure Õ(V ) by means of importance
sampling and convert back to O(σ).

As far as the last step is concerned, numerical simulations become now easier, at least in
principle. Indeed, Eq.(2.5) reveals that the measure of Z(β ,θ) is not complex any more, but it is
not necessarily positive yet due to the fluctuating sine functions it contains. Anyway, configurations
with negative weight are suppressed in the continuum limit. Bearing this in mind, the strategy we
decided to adopt in our preliminary runs is to generate configurations with a standard Metropolis
algorithm, automatically rejecting those changes entailing a negative Boltzmann weight. Although
this procedure introduces a bias, the above-mentioned suppression makes the systematic errors so
generated quite small [11, 12].

3. The dual formulation - part II

Actually a second formulation of Z(β ,R) with a real and positive probability distribution exists
and has been determined in order to estimate to which extent the above-mentioned bias affects the
measurements performed with the algorithm outlined in Section 2. Unfortunately, in this second
formulation lattice correlators G(n1,n2) - and thus any mass - are quite onerous to be computed:
thus, our strategy will consist in measuring G(n1,n2) with the first formulation of Z(β ,R) only,

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
3
3
8

A new approach to the two-dimensional σ -model Christian Torrero

while other observables3 will be computed within both approaches for comparison purposes.
In order to obtain the alternative formulation of Z(β ,R), let us consider ZSU(2)(β ) in Eq.(2.4)

again and assume that a given representation r has been chosen for all SU(2) matrices so that the
partition function Z̃(β ,R) — with R = 2r +1 — defined as

Z̃(β ,R) =
∫

∏
(n,µ)

dV(n,µ) exp

[
β ∑

(n,µ)
TrV (n,µ)

]
∏
n′

χr[V (n′)] , (3.1)

can be introduced. It can be shown that

Z(β ,R) = Z̃(β ,R) , (3.2)

when R appearing on the l.h.s. is integer. By definition, the character χr[V (n)] reads

χr[V (n)] =
r

∑
m1,m2,m3,m4=−r

V (n,1)m1m2V (n,2)m2m3V
†(n−~e1,1)m3m4V

†(n−~e2,2)m4m1 , (3.3)

Therefore, Z̃(β ,R) can be rewritten as

Z̃(β ,R) =
r

∑
{m1,m2,p1,p2}=−r

∏
(n′,µ)

Qm1m2 p1 p2(n
′,µ,β ) , (3.4)

with

Qm1m2 p1 p2(n
′,µ,β ) =

∫
dV (n′,µ) eβTrV (n′,µ)V (n′,µ)m1m2V

†(n′,µ)p1 p2 . (3.5)

Dropping the dependence on (n,µ) to ease the notations, this last quantity becomes

Qm1m2 p1 p2(β ) =
1

2r +1

2r

∑
J

J

∑
k=−J

CJ(β )C rp2
rm1,Jk C rp1

rm2,Jk , (3.6)

where C rp2
rm1,Jk are Clebsch-Gordan coefficients and

CJ(β ) =
2J +1

β
I2J+1(2β ) , (3.7)

I2J+1(2β ) being modified Bessel functions. Note that the Boltzmann weight in Eq.(3.4) is now real
and positive. Since

∑
k

C rp2
rm1,JkC

rp1
rm2,Jk = C rp2

rm1,J(p2−m1)
C rp1

rm2,J(p1−m2)
δp2−m1,p1−m2 , (3.8)

3See the next section for some examples.
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Figure 1: An example of allowed configuration within the second dual formulation of Z(β ,R) with R = 5
(i.e., r = 2). The square and the rectangles show how magnetic momenta can be related either to sites or to
links.

just 2 of the 4 magnetic numbers associated to each link are eventually free and the count of d.o.f.
is restored. Figure 1 shows an example of allowed configuration and how magnetic momenta can
be associated either to lattice sites — as meant in Eq.(3.3) — or to lattice links — as understood in
Eq.(3.8).

In this second formulation, configurations are generated by introducing a discontinuity in an
allowed state and letting it propagate randomly until it is reabsorbed. The new configuration is
accepted/rejected by a Metropolis test.

4. Preliminary results and conclusions

To test the correctness of the two approaches outlined before, the following two observables

O1(β ,R) =
∂ ln[Z(β ,R)]

∂β
, O2(β ,R,J) = 〈

J

∑
k=−J

C rp2
rm1,JkC

rp1
rm2,Jk〉 , (4.1)

have been numerically computed in the strong-coupling regime and compared to available analyti-
cal results. Concerning O2(β ,J), it is important to stress that it has no particular physical meaning
and that it can be computed just in the formulation described in Section 3 because of its definiton.

Table 1 shows how numerical estimates compare to analytical values: not only the agreement
is good in general but, at least in this regime and for these quantities, the bias affecting the first
formulation does not apparently impact too much on the data.

After these encouraging results, the next test being performed has been an attempt to recover a
periodic signal for suitable observables for values of the parameters corresponding to a fixed βO(3)

and varying θ in the initial non-linear σ -model.
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Observable Strong− coupling prediction 1st f ormulation 2nd f ormulation
O1(0.1,7) 0.09983 0.100(18) 0.0999(6)
O1(0.3,11) 0.29560 0.296(17) 0.2956(17)
O1(0.5,15) 0.48039 − 0.4804(26)
O1(0.7,15) 0.64918 0.649(16) −
O2(0.3,11,1) 0.00498 − 0.0049(61)
O2(0.5,15,1) 0.01308 − 0.0131(60)

Table 1: Comparison of analytical values of O1(β ,R) and O2(β ,R,J) with numerical estimates evaluated
with both formulations of Z(β ,R) with L = 40: 1st and 2nd formulation stand for Z(β ,R) as written in
Eq.(2.5) and Eq.(3.4) respectively. O2(β ,R,J) can actually be measured just within the approach described
in Section 3.
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