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1. Introduction

The properties of the phase transitions in Z(N) models are interesting both by themselves and
due to their connection with the deconfining transitions in SU(N) gauge theories, Z(N) being the
center subgroup of SU(N). In this paper we study the Z(N) lattice gauge theory (LGT) at zero
temperature. In the most general form, the action of the isotropic Z(N) LGT can be written as

Sgauge =
1
2 ∑

x
∑

n<m

N−1

∑
k=1

βk exp
(

2πik
N

(sn(x)+ sm(x+ en)− sn(x+ em)− sm(x))
)

, (1.1)

where en, n = 1,2,3, denotes the unit vector in the n-th direction. Similarly, the most general action
of the Z(N) spin model is given by

Sspin =
1
2 ∑

x
∑
n

N−1

∑
k=1

βk exp
(

2πik
N

(s(x)− s(x+ en))

)
. (1.2)

In both cases we used the convention

βk = β−k = βk+N > 0 . (1.3)

The standard Potts model corresponds to the choice when all βk are equal. Then, the sum over
k reduces to a delta-function on the Z(N) group. The conventional vector model corresponds to
βk = 0 for all k ̸= 1,N −1. For N = 2,3 the Potts and vector models are equivalent.

Two-dimensional (2D) standard and vector Z(N) LGTs are exactly solvable both in the finite
volume and in the thermodynamic limit. They exhibit no phase transition at any finite value of the
coupling constant β . For 3D Z(N) models no exact solution is known. While the phase structure
of the general model defined by (1.1) remains unknown, it is well established that Potts and vector
models with only β1 non-vanishing have one phase transition from a confining phase to a phase
with vanishing string tension [1, 2, 3].

The duality relation between 3D Z(N) gauge and spin models allows to establish the order
of phase transition in 3D Z(N) LGT using the results obtained for spin models. Since Z(2) LGT
is equivalent to the Ising model, its critical behavior is well known (see Refs. [4] and references
therein). Generally, the Z(N) global symmetry of the finite-temperature 4D SU(N) gauge theory
motivated thorough investigations, both analytical and numerical, of the 3D spin models, especially
for N = 2,3 [5, 6] (for more recent studies, see [7] and references therein). The 3D Potts models for
N > 3 have been simulated in [8] and studied by means of the high-temperature expansion in [9].

Surprisingly, much less is known about the critical behavior of Z(N) vector LGTs when
N > 4. They have been studied numerically in [10] up to N = 20 on symmetric lattices with
size L ∈ [4−16]. It was confirmed that zero-temperature models possess a single phase transition
which disappears in the limit N → ∞. A scaling formula proposed in [10] shows that the criti-
cal coupling diverges like N2 for large N. Thus, the U(1) LGT has a single confined phase in
agreement with theoretical results [11]. We are not aware, however, of any detailed study of the
critical behavior of the vector models with N ≥ 4 in the vicinity of this single phase transition.
Slightly more is known about the critical properties of Z(N) vector spin models. In particular, it
has been suggested that all vector spin models exhibit a single second order phase transition [12].
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An especially detailed study was performed on the Z(6) model, because the Z(6) global symmetry
appears as an effective symmetry of the Z(3) antiferromagnetic Potts model [13, 14]. The com-
puted critical indices suggest that the Z(6) vector model belongs to the universality class of the 3D
XY model. An interesting feature of the Z(6) model and, possibly, of all vector models with N > 4,
is the appearance of an intermediate rotationally symmetric region below the critical temperature
of the second order phase transition. The mass gap, however, was found to be rather small, but
non-vanishing in this region [13]. Combined with a renormalization group (RG) study, the analysis
concluded that this intermediate region presents a crossover to a low-temperature massive phase,
where the discreteness of Z(6) plays an essential role [14].

The main goal of the present work is to fill the gap in our knowledge about the critical behavior
of the 3D Z(N) LGTs. Another motivation comes from our recent studies of the deconfinement
transition in the Z(N) vector LGT for N > 4 at finite temperatures [15, 16, 17]. The major find-
ings of these papers was the demonstration of two phase transitions of the Berezinskii-Kosterlitz-
Thouless type and the existence of an intermediate massless phase. The critical indices at these
transitions have been found to coincide with the indices of the 2D vector spin models. An interest-
ing question then arises regarding the construction of the continuum limit of the finite-temperature
models in the vicinity of the critical points. For this to accomplish it might be useful, and even
necessary, to know the scaling of quantities such as string tension, correlation length, etc. near the
critical points of the corresponding zero temperature models.

2. Numerical results

To study the phase transitions in 3D Z(N) LGTs, it turns out to be more convenient to simulate
the dual spin model, whose action is given in (1.2). The equations for obtaining the coupling
constants for the dual spin model are given in [19]. Simulations were performed by means of
a cluster algorithm on symmetric lattices L3 with periodic BC and L in the range 8 – 96. For
each Monte Carlo run the typical number of generated configurations was 2.5 · 106, the first 105

of them being discarded to ensure thermalization. Measurements were taken after every 10 whole
lattice updates and error bars were estimated by the jackknife method combined with binning. The
following observables were used:

• complex magnetization ML = |ML|eiψ , ML = ∑x∈Λ exp
( 2πi

N s(x)
)

;

• population SL, SL = N
N−1

(maxi=0,N−1 ni
L3 − 1

N

)
, where ni is number of s(x) equal to i;

• susceptibilities of ML and SL: χ(M)
L , χ(S)

L , χ(·)
L = L2

(⟨
·2
⟩
−⟨·⟩2

)
;

• Binder cumulant U (M)
L = 1− ⟨|ML|4⟩

3⟨|ML|2⟩2 .

We computed also the heat capacity in the vicinity of the critical points.
To obtain the critical couplings, the Binder cumulant crossing method described in [20] was

used. In particular, we computed by Monte Carlo simulations the Binder cumulant U (M)
L and its first

three derivatives with respect to β for the different lattice sizes, thus allowing to build the function
U (M)

L (β ) in the region near the transition. Then, we looked for the value of β at which the curves

3
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Figure 1: Heat capacity (left) and susceptibility χ(M)
L (right) versus β for the 3D Z(5) vector model on

lattices with L = 8 (red), 16 (green), 24 (violet), 32 (blue) and 64 (orange). The vertical dashed line shows
the location of the critical point. The error bars are smaller than symbols.

U (M)
L (β ) related to the different lattice sizes L “intersect”. In fact, the critical coupling βc was

estimated as the value of β at which U (M)
L (β ) exhibits the least dispersion over lattice sizes ranging

from L = 16 to L = 96. To check critical couplings we have compared them with the results of the
SDA RG [21] and found out that the values obtained from RG and from Monte Carlo simulations
are very close.

The critical coupling values for the 3D Z(N > 4) vector models can be fitted with the formula

βc =
A

1− cos
(2π

N

) +C
(

1− cos
(

2π
N

))
, (2.1)

being a generalization of the critical coupling scaling given in [10], with following parameters
A = 1.50122(7), C = 0.0096(5), χ2/d.o.f. = 13.1. Despite the large χ2, probably due to the
underestimation of the error bars of critical couplings, the proposed function nicely interpolates
data over a large interval of values of N.

The procedure to determine the critical index ν is also inspired by Ref. [20]: for each lattice
size L the known function U (M)

L (β ) is used to determine dU (M)
L (β )/dβ ; from this, the derivative of

U (M)
L with respect to the rescaled coupling x = (β −βc)L1/ν can be calculated,

dU (M)
L

dx
=

dU (M)
L

dβ
L1/ν . (2.2)

The best estimate of ν is found by minimizing the deviation of dU (M)
L /dx with respect to a constant

value. The minimization can be done at βc or at any other value βf ≈ βc defined as the point where
U (M)

L on a given lattice becomes equal to some fixed value. The resulting values for ν , do not differ
within error bars.

The critical index α , determined from the ν values obtained in the previous subsection by
means of the relation α = 2− dν , gets negative values for all N ≥ 5, meaning that the transition
is of order higher than two. In fact, these negative values are very close to that of the 3D XY
model [20]. However, the plots of the heat capacity (see Fig. 1(left)) clearly show that it diverges in
the vicinity of the critical point. Moreover, the maxima of the heat capacity and of the susceptibility
χ(M)

L approach the critical point from different sides (see Figs. 1).
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This suggests that a different value for the index ν can be found if a finite-size scaling (FSS)
analysis is done on the peak values of the heat capacity, using as fitting function

C(L) = ALα/ν . (2.3)

After α/ν is extracted, from the relation α = 2−dν the value of ν can be obtained.
We see that while for N = 2,4 the resulting ν agrees with the value of ν in the 3D Ising model,

it is not so for N > 4. The most important fact is, however, that in all cases the ν indices obtained
this way are close to ν ≈ 0.63 – the critical index for the Ising model. The difference between
ν indices obtained from the U (M)

L cumulants and from the heat capacity leads us to conclude that
we have two kinds of singularity depending on whether one approaches the critical coupling from
above (3D XY model-like singularity) or from below (3D Ising universality class), for N > 4.

Finally, the critical indices β/ν and γ/ν can be extracted from the FSS analysis of the mag-
netization ML and its susceptibility χ(M)

L , according to the following fitting functions,

ML = A1L−β/ν , χML = A2Lγ/ν(1+B2L−δ/ν) . (2.4)

The critical index η will then be given by 2− γ/ν and the hyperscaling relation d = 2β/ν + γ/ν
must be satisfied with d = 3. The δ exponent was fixed to be 0.53 – the value for the XY model.
When we take δ in the range 0.4-0.7 the change of the critical index γ/ν remains smaller than the
error estimates, so our results do not depend much on the exact value of δ . On the other hand,
without this second order correction η value becomes much smaller (see [19] for comparison).

The critical indices for different Z(N), N = 2,4,5,8,13,20 are summarized in Table 1. More
detailed results with comparison of the different methods can be found in [19].

Table 1: Critical couplings and critical indices for 3D Z(N) models: (νBinder corresponds to the ν index
obtained from the Binder cumulant derivatives, νheat – the ν index obtained from the heat capacity, d =

2β/ν + γ/ν and should be equal to 3).

N βc νBinder νheat β/ν γ/ν η
2 0.761395(4) 0.6306(8) 0.6143(6) 0.504(2) 1.975(8) 0.025(18)
4 1.52276(4) 0.62933(12) 0.6168(14) 0.493(2) 1.951(14) 0.049(14)
5 2.17961(10) 0.6681(8) 0.6360(6) 0.5088(7) 1.971(12) 0.029(12)
6 3.00683(7) 0.6756(16) 0.6360(10) 0.5052(9) 1.970(5) 0.030(5)
8 5.12829(13) 0.6748(2) 0.6336(3) 0.5083(8) 1.966(4) 0.034(4)

13 13.1077(3) 0.6723(17) 0.6340(4) 0.5092(11) 1.971(7) 0.029(7)
20 30.6729(5) 0.6739(7) 0.6314(3) 0.5034(7) 1.99(6) 0.01(6)

3. Symmetric phase

Another interesting phenomenon we have encountered during our study is the appearance of a
symmetric phase just below βc for all N ≥ 5. That such phase exists in the vector Z(6) spin model
has been known for a long time [12, 13, 14]. Here we confirm its existence for all vector Z(N ≥ 5)

5
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LGTs. The phase exhibits itself, e.g., in the distribution of magnetization angle. In the region
just below critical point the magnetization angle is evenly distributed, showing that the continuous
symmetry is not broken. Only at much smaller couplings one can observe the appearance of a
symmetry-broken phase. In addition, we have studied the behavior of the population susceptibility
below βc. For N ≥ 5 it has a second broad maximum, which slowly moves to βc with increasing
lattice size. While, for N = 5 the peak of the population susceptibility moves rather fast and
practically collapses with the peak at the critical coupling on the largest available lattice L = 96,
for larger N the peak stays rather far from the corresponding critical coupling, even for L = 96
(with our data we cannot even exclude a situation when the convergence of the second maximum
is logarithmic). We can imagine two scenarios to explain such behavior:

1. This symmetric phase exists only in finite volume. When the lattice size increases, the second
maximum approaches the critical coupling and, eventually, the symmetric region shrinks and
disappears. The explanation proposed in [13, 14] might work in this case, too. Namely, the
symmetric phase on the finite lattice is a phase with a very small mass gap and describes a
crossover region to the symmetry-broken phase.

2. For N > 5 the second maximum of the population susceptibility stays away from the critical
couplings even in the infinite volume limit. In this case it might correspond to some higher-
order phase transition and the symmetric phase with tiny or even vanishing mass gap exists
also in the thermodynamic limit.

In both cases it is tempting to speculate that this symmetric region is reminiscent of the massless
phase which appears in these models at finite temperature [17, 18]. Whichever scenario of the
above two is realized, one needs to study the models on much larger lattices to uncover it.

4. Summary

We have studied the 3D Z(N) LGT at zero temperature aiming at shedding light on the na-
ture of phase transitions in these models for N ≥ 4. This study was based on the exact duality
transformations of the gauge models to generalized 3D Z(N) spin models.

The main results can be shortly summarized as follows:

• We have determined numerically the position of the critical couplings for various Z(N) mod-
els. For N = 2,3 we find a reasonable agreement with the values quoted in the literature. For
larger N, we have significantly improved the values given in [10]. Critical points obtained
are in good correspondence with the results of our RG estimations [21].

• The critical indices ν and η derived here for N = 2,4 suggest that these models are in the
universality class of the 3D Ising model, while our results for all N > 4 hint all vector Z(N ≥
5) LGTs belong to the universality class of the 3D XY model. The value of the index ν stays
very close to the XY value, ν ≈ 0.6716, given in [20]. The index α in this case takes a small
negative value. It thus follows that a third order phase transition takes place for N ≥ 5.

• The index α extracted from the specific heat roughly agrees with the value of 3D Ising model
for all N studied. The fact that we observe two different values of the index α dependently

6
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on whether we approach the critical point from below or from above leads to the conclusion
that the first derivative of the free energy could exhibit a cusp in the thermodynamic limit if
N > 4.

• Our data also revealed the existence of a symmetric phase for all Z(N) vector LGTs if N > 4.
However, substantially larger lattices are required to see if this phase survives the transition
to the thermodynamic limit.

• The scaling aTc = (βc − βc(NT ))
−ν/NT can be used to describe the dependence of finite-

temperature critical points obtained in [18] on NT .
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