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1. Introduction

So far, people have introduced several extreme conditions or external environments to lattice
QCD, for example, a finite temperature, a finite density, and an external electromagnetic field. In
this study, we introduce another extreme condition, that is, a “rotation”. There are many rotations
in QCD. The first example is the ultrarelativistic heavy-ion collision at Relativistic Heavy Ion
Collider (RHIC) or Large Hadron Collider (LHC). In a non-central collision of heavy ions, the
fragments have large angular momenta around the central axis of the collision. The created quark-
gluon plasma and the created hadrons rotate rapidly. The second example is the inner core of a
rapidly rotating compact star. The core of a compact star is a high-density QCD matter like a
color superconductor, and it rotates because of the rotation of the star. Also in low-energy nuclear
physics, rotational modes or high-spin states of nuclei are interesting theoretical topics, and they
are produced in nuclear experimental facilities.

However, the lattice QCD simulation of a rotating matter is quite difficult in the straightforward
way. Rotation is characterized by the circulation of velocity field. In a rotating matter, particles
flow with finite velocity. Such a state is not in equilibrium. Since the lattice QCD simulation is an
equilibrium-state simulation, the rotating matter cannot be generated. To overcome this difficulty,
we rotate the reference frame. As shown in Fig.1, the rotating matter seems rest in a rotating
frame. Particles do not flow in the rotating frame. This state is in equilibrium and can be simulated
in lattice QCD. The transformation of the reference frame makes the simulation of the rotating
matter possible.

In this study, we formulate lattice QCD in rotating frames toward the first-principle simulation
of the rotating QCD matter [1].
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Figure 1: Rotating lattice.
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2. Rotating lattice action

We consider the coordinate transformation from a rest frame to a rotating frame in the Eu-
clidean space-time. We choose the Cartesian coordinatexµ = (x,y,z,τ) and rotate the coordinate
around thez axis. The metric tensor of the rotating frame is

gµν =


1 0 0 yΩ
0 1 0 −xΩ
0 0 1 0

yΩ −xΩ 0 1+ r2Ω2

 . (2.1)

We substitute this metric tensor into the QCD action in a general curved space-time.
The continuum gluon action is

SG =
∫

d4x
1

g2
YM

tr[(1+ r2Ω2)FxyFxy+(1+y2Ω2)FxzFxz

+(1+x2Ω2)FyzFyz+FxτFxτ +FyτFyτ +FzτFzτ

+2yΩFxyFyτ −2xΩFyxFxτ +2yΩFxzFzτ −2xΩFyzFzτ +2xyΩ2FxzFzy].

(2.2)

We discretize this action on the lattice. The gluon field strength is constructed from the gauge
invariant loops of the link variablesUµ(x). The squared terms, e.g.,FxyFxy, are constructed from
the“ plaquette.” We take the clover-type average of four plaquettes as

Ūµν =
1
4

 µ

ν  . (2.3)

In the rotating frame, the gluon action includes the non-squared terms, e.g.,FxyFyτ , which break
parity and time-reversal symmetry. The non-squared terms are constructed from the “chair-type”
loop [2]. We take the (anti-)symmetric average of eight chair-type loops as

V̄µνρ =
1
8


ρ

ν

µ
−

ρ
ν

µ

 . (2.4)

The lattice gauge action is

SG =∑
x

β
[
(1+ r2Ω2)

(
1− 1

Nc
RetrŪxy

)
+(1+y2Ω2)

(
1− 1

Nc
RetrŪxz

)
+(1+x2Ω2)

(
1− 1

Nc
RetrŪyz

)
+3− 1

Nc
Retr(Ūxτ +Ūyτ +Ūzτ)

− 1
Nc

Retr
(
yΩV̄xyτ −xΩV̄yxτ +yΩV̄xzτ −xΩV̄yzτ +xyΩ2V̄xzy

)]
.

(2.5)

The bare lattice coupling isβ = 2Nc/g2
YM .
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The continuum fermion action is

SF =
∫

d4x ψ̄
[
(γ1−yΩγ4)Dx+(γ2+xΩγ4)Dy+ γ3Dz+ γ4

(
Dτ + iΩ

σ12

2

)
+m

]
ψ. (2.6)

with σ12 = i
2(γ

1γ2− γ2γ1). As a result of rotation, the Dirac operator includes the orbit-rotation
coupling termγ4Ω(xDy−yDx) and the spin-rotation coupling termiγ4Ωσ12/2. We discretize this
fermion action using the Wilson fermion as

SF = ∑
x1,x2

ψ̄(x1)

[
δx1,x2 −κ

{
(1− γ1+yΩγ4)Tx++(1+ γ1−yΩγ4)Tx−

+(1− γ2−xΩγ4)Ty++(1+ γ2+xΩγ4)Ty−+(1− γ3)Tz++(1+ γ3)Tz−

+(1− γ4)exp

(
iaΩ

σ12

2

)
Tτ++(1+ γ4)exp

(
−iaΩ

σ12

2

)
Tτ−

}]
ψ(x2)

(2.7)

with Tµ+≡Uµ(x1)δx1+µ̂,x2 andTµ−≡U†
µ(x2)δx1−µ̂,x2. The bare hopping parameter isκ =1/(2am+

8).
There are two kinds of the rotation in the Euclidean space-time: the “Euclidean” rotation and

the “Minkowskian” rotation. The order of two operations, the Wick rotationτ =−it and the spatial
rotationθ = θrest−Ωt, is essential. The Minkowskian rotationΩ=−∂θ/∂ t is defined as the spatial
rotation before the Wick rotation, and the Euclidean rotationΩ =−∂θ/∂τ is defined as the spatial
rotation after the Wick rotation. As long as the analytic continuation to the original Minkowski
space-time is validated, these rotations produce the same end result. In the above equations, we
adopted the Euclidean rotation. For the Minkowskian rotation, the angular velocity is replaced as
Ω → iΩ. Both of the gluon action and the fermion action becomes complex. Thus, there is the sign
problem in the Minkowskian rotation. On the other hand, there is no sign problem in the Euclidean
rotation. (This is similar to the case of external electric fields. There is the sign problem in the
Minkowskian electric fieldE j = ∂A j/∂ t −∂A0/∂x j and no sign problem in the Euclidean electric
field E j = ∂A j/∂τ −∂A4/∂x j [3].)

3. Numerical test

We performed the quenched SU(3) Monte Carlo simulation. The lattice size isNx×Ny×Nz×
Nτ = 13×13×12×12. We set the bare lattice couplingβ = 5.9 and the bare hopping parameter
is κ = 0.1583, where the lattice spacing isa≃ 0.10 fm and the meson mass ratio ismπ/mρ ≃ 0.59
[4]. We adopted the Euclidean rotation and restricted the angular velocityΩ only to small values.
The lattice is rotated around thez axis. In thex andy directions, we take the Dirichlet boundary
conditions. The range of thex-y plane isx= [−6a,6a] andy= [−6a,6a]. In thezandτ directions,
we take boundary conditions in the same manner as the usual lattice simulation.

As the first observable, we calculate angular momentum. Before discussing the simulation
result, let us recall the case of a classical point particle. In a rest frame, the classical Lagrangian is
L = mr2θ̇ 2

rest/2 and the classical solution isJclas= 0. In a rotating frame, the classical Lagrangian
is L = mr2(θ̇ +Ω)2/2, and the classical solution is

Jclas=−IΩ =−mr2Ω, (3.1)
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i.e., a finite angular momentum. This is because the rest particle seems oppositely rotating. The
coefficientI is the moment of inertia, andI = mr2 for a point particle. Using the lattice simulation
in the rotating frame, we demonstrate that the same happens in QCD.

We analyzed the gluon angular momentum density

JG =

⟨
1

g2
YM

tr(2yFxyFyτ −2xFyxFxτ +2yFxzFzτ −2xFyzFzτ)

⟩
, (3.2)

the fermion orbital angular momentum density

JFL =
⟨
ψ̄γ4(xDy−yDx)ψ

⟩
, (3.3)

and the fermion spin angular momentum density

JFS=

⟨
iψ̄γ4 σ12

2
ψ
⟩
. (3.4)

We discretize these operators in the same way as the lattice actions. In Fig.2, we show the angular
momentum density along thex axis (y= 0). The angular velocity is fixed ataΩ = 0.06. JG andJFL

are quadratic functions of the distance from the rotation axis.JFS is independent of the distance
(it is small but nonzero in the figure). In Fig.3, we show the angular momentum density as a
function of the angular velocityΩ. The spatial coordinate is fixed at(x,y) = (2a,0). All the
angular momentum densities are proportional to the angular velocity. Thus, the functional forms
and the numerical coefficients are

JG = −(0.94±0.01)a−4× r2Ω, (3.5)

JFL = −(0.60±0.01)a−4× r2Ω, (3.6)

JFS = −(0.17±0.01)a−2×Ω. (3.7)

JG andJFL are proportional tor2Ω, and thus behave like a classical point particle.JFS is inde-
pendent ofr because spin is an intrinsic angular momentum. Although the simulation is a fully
quantum one, the qualitative behavior can be interpreted by an intuitive classical picture. The nu-
merical coefficients ofJG andJFL are the inertial mass densities, and that ofJFS is the density of
the moment of inertia.

4. Discussion

We formulated lattice QCD in rotating frames. In the above analysis of the angular momenta,
the angular momenta seem finite in the rotating frame but the matter does not rotate in the rest
frame. The simulation of an actually rotating matter will be possible by introducing additional
element in the rotating frame. For example, if we introduce the Wilson line in the rotating frame,
it corresponds to a rotating heavy-quark trajectory in the rest frame. If we introduce an external
anisotropic potential, we can generate the rotating matter with finite mass, which has been done in
condensed matter physics for the rotating Bose-Einstein condensation [5]. Once the rotating QCD
matter is generated, there are many possible applications, e.g., rotating hadrons, the chiral vortical
effect in rotating heavy-ion collisions [6], and quantum vortex nucleation in the core of compact
stars [7]. More generally, this kind of the simulation can be applied to other field theories in curved
space-time.
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Figure 2: Angular momentum densityJ along thex axis with the angular velocityaΩ = 0.06. The solid
curves are quadratic fitting functions.
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Figure 3: Angular momentum densityJ at (x,y) = (2a,0) as a function of the angular velocityΩ. The
solid curves are linear fitting functions.
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