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July 29 âĂŞ August 3, 2013

Mainz, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
3
5
8

Study of thermal monopoles in lattice QCD Vitaly Bornyakov

1. Introduction

The nonperturbative properties of the nonabelian gauge theories, e.g., confinement, confinement-

deconfinement transition, chiral symmetry breaking, etc. are closely related to the Abelian monopoles

defined in the maximally Abelian gauge (MAG) [1, 2].

It has been recently argued that the MAG is a proper Abelian gauge to find gauge invariant

monopoles since t’Hooft-Polyakov monopoles can be identified in this gauge by the Abelian flux,

but this is not possible in other Abelian gauges [3].

In recent papers [4, 5] it has been suggested that color-magnetic monopoles contribution can

explain the strong interactions in the quark-gluon matter which were found in heavy ion colli-

sions experiments [6]. These proposals inspired studies of the properties and possible roles of the

monopoles in the quark-gluon phase [7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

In Ref. [5] it has been shown that thermal monopoles in Minkowski space are associated with

Euclidean monopole trajectories wrapped around the temperature direction of the Euclidean vol-

ume. So the density of the monopoles in the Minkowski space is given by the average of the

absolute value of the monopole wrapping number. First numerical investigations of the wrap-

ping monopole trajectories were performed in SU(2) Yang-Mills theory at high temperatures in

Refs. [17] and [18]. A more systematic study of the thermal monopoles was performed in Ref. [9].

It was found in [9] that the density of monopoles is independent of the lattice spacing, as it should be

for a physical quantity. The density–density spatial correlation functions were also computed in [9].

It was shown that there is a repulsive (attractive) interaction for a monopole–monopole (monopole–

antimonopole) pairs, which at large distances might be described by a screened Coulomb potential

with a screening length of the order of 0.1 fm. In Ref. [10] it was proposed to associate the re-

spective coupling constant with a magnetic coupling αm. In the paper [12] trajectories which wrap

more than one time around the time direction were investigated. It was shown that these trajectories

contribute significantly to a total monopole density at T slightly above Tc. It was also demonstrated

that Bose condensation of thermal monopoles, indicated by vanishing of the monopole chemical

potential, happens at temperature very close to Tc.

The quantitatively precise determination of such parameters as monopole density, monopole

coupling and others is necessary, in particular, to verify the conjecture [4] that the magnetic

monopoles are weakly interacting (in comparison with electrically charged fluctuations) just above

transition but become strongly interacting at high temperatures.

So far lattice studies of the thermal monopoles were mostly made for SU(2) gluodynamics.

First results for SU(3) gluodynamics and QCD were presented in our previous paper [19] In this

paper we present new results of our study of the thermal monopoles in the SU(3) gluodynamics

concentrating on the vicinity of the confinement-deconfinement phase transition. To avoid system-

atic effects due to Gribov copies we use the gauge fixing procedure as in Ref. [20] with 10 gauge

copies.

In paper [21] the thermal monopoles were investigated with new definition of MAG. The

results obtained were in qualitative agreement with results of Ref. [19].

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
3
5
8

Study of thermal monopoles in lattice QCD Vitaly Bornyakov

2. Definitions and simulation details

MAG is determined by the gauge condition [1]

∑
c6=3,8

(

∂µδac + ∑
b=3,8

fabcAb
µ(x)

)

Ac
µ(x) = 0 , a 6= 3,8 (2.1)

Solutions of this equation are extrema (over g) of the functional FMAG[A
g]

FMAG[A] =
1

V

∫

d4x ∑
a 6=3,8

[Aa
µ(x)]

2 (2.2)

Abelian projection means discarding offdiagonal components from the observables

∑
a

Aa
µ(x)T

a → A3
µ(x)T

3 +A8
µ(x)T

8 (2.3)

On a lattice MAG gauge fixing functional and Abelian projection are of the form [2]

F(U) =
1

V
∑

x,µ,i

(

|Uµ(x)
ii|2
)

, Uµ(x)→ uµ(x) ∈U(1)2 (2.4)

After Abelian projection one can define magnetic currents:

ji
µ ≡

1

4π
εµνρσ ∂νΘ

(i)
ρσ =−

1

2
εµνρσ ∂νm

(i)
ρσ , i = 1,2,3 (2.5)

were Θ
(i)
ρσ is lattice Abelian field strength. The magnetic currents satisfy the constraint

∑
a

ji
µ(x) = 0 , (2.6)

on any link {x,µ} of the dual lattice. Furthermore magnetic currents are conserved and form closed

loops.

Thermal monopoles are defined as clusters of magnetic currents wrapped in the temperature

dimension. Wrapping number for given cluster Ni
wr is equal to:

Ni
wr =

1

3Lt
∑

ji
4(x)∈cluster

ji
4(x) (2.7)

Then respective density is

ρ =
〈 ∑clusters,a |N

i
wr| 〉

3L3
s a3

(2.8)

One can also define the densities ρk of the thermal monopoles wrapped k times.

SU(3) lattice gluodynamics was simulated with Wilson action. Configurations of N f = 2

lattice QCD were produced on lattices 323 · 12 with non-perturbatively O(a) improved Wilson

fermionic action at β = 5.25. It had been found by DIK collaboration [22] that at crossover Tc ≈

200 MeV and mπ ≈ 400MeV.
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Figure 1: Full monopole density ρ(T ) (full symbols) and density ρ1(T ) (empty symbols) in SU(3) gluody-

namics vs T/Tc. Full monopole density for full QCD (black symbols) is shown for comparison.
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Figure 2: Monopole density ρk(T ) for k = 2 (red) and k = 3 (green) in SU(3) gluodynamics vs T/Tc.

3. Results

In Figure 1 we show density ρ(T ) defined in eq. 2.8 and density ρ1(T ) for thermal monopoles

wrapped one time as function of the ratio T/Tc for temperatures below and above Tc. The data in-

dicate volume independence of both densities. It can also be seen that ρ1(T ) is a main contribution

to ρ(T ) at all temperatures. The important new observation is that both densities jump up at the

transition point. Thus density ρ1(T ) is indicates the phase transition. One can imagine that this

sharp increase of ρ1(T ) is due to evaporation of the monopole condensate, existing in the confine-

ment phase, or, in other words, many clusters with Nwr = 1 appear from disintegrated percolating
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cluster. In Figure 1 we show for comparison the density ρ(T ) computed for full QCD. One can see

that in this case the density also grows fast near the phase transition.

The behavior of the densities ρk(T ) for k = 2 and 3, shown in Figure 2, is quite different. They

increase below Tc and decrease above Tc.
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Figure 3: Magnetic coupling αM in SU(3) gluodynamics vs T/Tc.
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Figure 4: Screening mass mD in SU(3) gluodynamics vs T/Tc.

We also computed the correlators for charges of same sign (gMM(r)) and for charges of oppo-

site sign (gAM(r)) :

gMM(r) =
〈ρa

M(0)ρa
M(r)〉

2ρb
Mρb

M

+
〈ρa

A(0)ρ
a
A(r)〉

2ρb
Aρb

A

(3.1)

gAM(r) =
〈ρa

A(0)ρ
a
M(r)〉

2ρb
Aρb

M

+
〈ρa

M(0)ρa
A(r)〉

2ρb
Aρb

M

(3.2)

The correlators were fitted to functions [9, 10]

gMM,AM(r) = e−U(r)/T , (3.3)
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where

U(r) =
αm

r
e−mDr (3.4)

In Figure 3 and Figure 4 we show dependence of the parameters αm and mD on temperature. It

can be seen that αm increases fast above Tc and then flattens. mD/T increases slightly near Tc and

starts to decrease at higher temperatures. These results are in agreement with results obtained for

SU(2) gluodynamics [10, 15].
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Figure 5: Percolation transition order parameter.
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Figure 6: Nonpercolating monopole cluster average size - ’susceptibility’ χcl

Additionally we have studied the percolation of the magnetic currents at Tc in SU(3) gluody-

namics. In Figure 5 the ration of the average size of the maximal cluster to the full number of the

magnetic currents, i.e. order parameter of the percolation transition is depicted. In Figure 6 the

nonpercolating cluster average size which is often called susceptibility is shown. Both observables

indicate that the percolation transition coincides with the phase transition.
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4. Conclusions

We have found that density of thermal monopoles both in SU(3) gluodynamics and in QCD

grows fast in the vicinity of the transition (crossover) point. This is determined by the ρ1(T ) con-

tribution alone. Our data indicate volume independence of the densities ρ(T ) and ρ1(T ). The

magnetic coupling αm and screening mass mD show qualitatively same behavior as in SU(2) gluo-

dynamics.
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