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1. Introduction

The most important probes for the phase states of a four-dimensional gauge field theory are
the Wilson and t’Hooft line operatros that are defined on one-dimensional curves in the space-time.
For example, these line-operators define order parameters for the confinement-deconfiment phase
transition of the QCD vacuum. However, for more detail understanding of four-dimensional gauge
field theory dynamics and vacuum topology we need additional probes expressed by operators
defined on the subspaces with higher dimensions.

Possible candidates are operators that are defined on the two-dimensional surface in the four-
dimensional space-time. In the present work the surface operator in an SU(2) non-Abelian gauge
field theory is studied. We analyze abelian projection of the SU(2) symmetry to the U(1) group
calculating the surface operator using multilevel and multi-hit algorithms for the sake of statistical
confidence. The surface operator dependence on the surface area and volume is studied in confine-
ment and deconfinement phases. It is shown that at the deconfinement phase the spatial surface
operator exhibits nontrivial area dependence. In the confinement phase the operator is trivial with
no area and volume dependence. It is shown also that the temporal surface operator exhibits the
same phase behavior.

2. Surface operator on the lattice

In general case the surface operator can be defined by the following expression:

W = e
iκ

∫
S
Fi j dσ i j

(2.1)

where Fik - the gauge field tensor, dσik - surface element (here we do not distinguish between
upper and lower indexes, because all calculations are performed in Euclidean space-time after
Wick rotation), i, k = 1, 2, 3 - indexes of the space-time directions. The field flow through a lattice
plaquette can be related with the plaquette angle θp as follows:

κ
∫
S

Fi j dσ i j = θp (2.2)

Thus, we define the surface operator on the lattice as follows:

Wp (S) = Re∏
S

eıθp , (2.3)

The phase of a wave function is changing by the plaquette angle value by moving along the contour
of the plaquette. This phase related with chromomagnetic field flow through plaquette surface as
follows:

κ
∫
S

H ·dS = κ
∮

A ·dl = θp, (2.4)

where integration over dl carried out on a path covering the area S. This equation provides a simple
connection of the surface and line operators in the trivial vacuum.
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In this work we consider pure gauge field theory with SU (2) group symmetry broken up to
U (1). Thus the θp related with Fµν as follows:

Fp = 1̂cosθp + ıniσi sinθp, (2.5)

where ni - vector on the unit sphere, σi - Pauli matrices, Fp is a value of the gauge field tensor Fµν

on the plaquette. Thus, for the θp we can write the following expression:

θp = arccos
(

1
2

Tr Fp

)
. (2.6)

All phases are calculated on the surface of the three dimension cube in the space-time. The
function arccos(x) is defined within the range [0,π]. In the gauge group U (1) the range of variation
of the angle is [0,2π]. Thereby, on the one side of cube the phase is selected as arccos

(1
2 Tr Fp

)
, on

the opposite side as arccos
( 1

2 Tr Fp
)
+π .

In lattice calculations we use the link variable Ui j ∈ SU (2), where i, j is number of lattice sites,
located at the ends of the link. Variable Ui j related with Aµ as follows:

Ui j = eıgAµ a, (2.7)

where a is distance between sites and Aµ is taken at the middle of the link i j. According to Wilson
[7] action for pure gauge theory can be written as follows:

S = ∑
�

S�, (2.8)

S� = β
[

1− 1
2

ReTr
(
Ui jU jkUklUli

)]
, (2.9)

where β = 4/g2
 and � is a plaquette. The partition function is

Z =
∫

(dU) e−S(U). (2.10)

Any observed value of a physical quantity A we can calculated using following expression:

⟨A⟩= Z−1
∫

(dU) A(U) e−S(U), (2.11)

where A(U) is physical quantity calculated on the lattice configurations U and the integration is
over all configurations with weight equal e−S(U).

For study the surface operator we prepared two sets of configurations, in the confinement and
deconfinement phase. In order to ensure that our lattice configuration exactly are in one phase we
calculate Polyakov loop, which is defined as

L(T ) =
1
2

Tr

e
ıg

1/T∫
0

A dt

 , (2.12)

where t is cyclic variable with period 1/T , T is temperature on the lattice. Polyakov loop is the
order parameter for the phase transition confinement-deconfinement. In the confinement phase it is
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Figure 1: Dependence of the Witten parameter from area surface in the confinement (left panel) and decon-
finement (right panel) phase and comparison of the fitting.

equal zero, and in the deconfinement phase it is different from zero. In the Table 1 we show lattice
characteristic which used in calculation. On the lattice the Polyakov loop is defined by following
expression:

L(x) =
1
2

Tr
Nt−1

∏
t=0

U0 (t,x) , (2.13)

where U0 (t,x) is the time direction link. To calculate the surface operator on the lattice, we select

Phase Size lattice β L(T )
Deconfinement 4∗303 > 2.25 0.349±0.002
Confinement 414 ≤ 2.25 0.0002±0.0006

Table 1: Used lattice for search volume dependence.

a cube in the 3d space. Then, the phase is calculated on the each plaquette on the surface of the cube
and result is obtained as a sum of these phases. After that we calculate our parameter at different
points in the lattice configuration and average them. And the final result is obtained by averaging
on the set of configurations.

We consider a cube with length of edge from 1a to 13a (a is the lattice scale), which corre-
sponds area surface from 6 to 1014 plaquettes. For best accuracy we use multilevel [6], multi-hit
[9] algorithms and MPI parallelism.

3. Results

All calculation performed on 50 configurations in 1000 points on the each lattice configuration.
For both phases results are shown at the figure 1. To extract area and volume dependence of the
surface operator we fit the obtained data by the following expression:

Wp(S,V ) = e−σS−γV , (3.1)
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Figure 2: Dependence of the area coefficient σ on the lattice spacing. Solid line shows fit of the coefficient
dependence in the confinement phase, dashed line is the fit in the deconfinement phase.
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Figure 3: Values of the area (σph) and volume (γph) coefficients for the spatial (left panel) and temporal
(right panel) surfaces in the confinement and deconfinement phases.

where σ is area coefficient, γ is volume coefficient, S is the surface area surface, V is volume
covered by the surface. The parameters values are obtained with the help of minuit2 library from
ROOT1 package.

The figure 2 shows different asymptotic behavior of the σ parameter at large a in different
phases, what points on possible order parameter implied in σ . At small a the parameter σ is
divergent. This divergent behavior is related to the ultraviolet divergence of the self energy that is
proportional to the area of the closed surface. This divergence can be qualitatively related to self
energy of colored dipoles on the surface that define the surface operator. It is an analogue of the
divergence in case of the Wilson lines:

⟨Tr Pexp

−
∫
C

∧
Aµ dxµ

⟩ ∼ exp
{
−const g2L/a

}
, (3.2)

1See http://root.cern.ch/drupal/
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where L is the perimeter of the Wilson line C, a is the lattice spacing, g2 is a coupling and we
keep only the most divergent piece. For more information about magnetic degrees of freedom
and surface operators one can refer to the article [11]. Thus, we parametrize the area and volume
coefficients as follows:

σ (a) = σph +σdiv/a2,

γ (a) = γph + γdiv/a3 (3.3)

where σph and γph are the physical coefficients and σdiv and γdiv are the coefficients of the divergent
part of area and volume law. After fitting we obtain that the σph = 0 in confinement phase and
σph ̸= 0 in deconfinement case for both spatial and temporal surfaces (see figure 3). Thus, the σph

can be considered as an order parameter for the confinement-deconfinement phase transition. For
the temporal surfaces (left panel of the figure 3) there is no volume law in the both phases. The
volume law for the spatial surface needs more precise study to make statistical errors smaller.

In conclusion we can say following: 1) area law of the temporal surface operator corresponds
to the perimeter law of the Wilson loop; 2) temporal surface operator has no volume dependence
in both phases; 3) volume dependence of the spatial surface needs more precise study.
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