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1. Introduction

Theoretically one can add to the Euclidean action of QCD the additional term −iθ Q, where

Q =
∫

d4xq(x) =
∫

d4x
g2

64π2 Ga
µν(x)G̃

a
µν(x) (1.1)

is the topological charge operator, Ga
µν is the non-Abelian gauge field strength and G̃a

µν = εµνρσ Ga
ρσ .

However, this term violates explicitly CP, while experiments tell us that QCD is invariant
under P and CP, setting a quite stringent upper bound on the parameter θ , which is expected to be
|θ | . 10−10 [1, 2]. Nevertheless, θ represents an important parameter in strong interactions, both
from the theoretical and phenomenological point of view.

Recently, it was hypothesized that local fluctuations of the topological charge may induce
measurable phenomena in the presence of extremely intense magnetic fields. This scenario can be
realized in non-central heavy ion collisions, where one expects magnetic fields up to 1015 Tesla at
LHC. According to the chiral magnetic effect [3, 4], for a magnetic field strong enough to align
the magnetic moments of quarks, these local fluctuations of the topological charge would induce a
net unbalance of chirality, leading to a net separation of electric charge along the direction of the
magnetic field.

Albeit e.m. background fields couple directly only with charged particles, recent lattice studies
with dynamical fermions have shown that these fields, via quark loop effects, can influence also the
gluonic sector [5, 6, 7, 8, 9, 10]. In an attempt to better clarify such issue, we investigate how the
explicit breaking of the CP symmetry in the electromagnetic sector propagates to the gluon fields.

We will consider QCD in the presence of constant and uniform e.m. fields such that Fµν F̃µν ∝

~E ·~B 6= 0, which are expected to induce an effective CP-violating interaction in the gluon sector,
θeff

g2

64π2 Ga
µν(x)G̃

a
µν(x), where θeff must be an odd function of ~E ·~B. At the lowest order, we can

write

θeff ' χCP e2~E ·~B+O((~E ·~B)3) (1.2)

where χCP can be seen as the susceptibility of the QCD vacuum to CP-breaking e.m. fields, and is
directly related to the strength of the effective pseudoscalar QED-QCD interaction, χCP q(x)e2~E ·
~B [11, 12].

In [13] we measured χCP on the lattice performing lattice simulation of QCD in the presence
of e.m. background fields such that ~E ·~B 6= 0, and we have determined the induced θeff by studying
distribution of the topological charge. In this work we also report our study of the Dirac zero modes
in the presence of such CP-odd e.m. background fields.

2. The method

We can introduce the external e.m. fields in the QCD lagrangean by modifying the covariant
derivative of quarks, Dµ = ∂µ + igAa

µT a + iqAµ , where Aµ is the e.m. gauge potential and q is the
quark electric charge. That can be implemented on the lattice by adding proper U(1) phases uµ(n)
to the usual SU(3) parallel transports, Uµ(n)→ uµ(n)Uµ(n), where n is a lattice site. Because
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of the periodic boundary conditions used in our lattice simulations, the possible value of the e.m.
fields must be integer multiple of a minimum quantum:

f = 2π/(qa2LµLν) , (2.1)

where Lµ , Lν are the lattice extensions along the directions orthogonal to the field (for more detail
see [13]). We have considered two flavour QCD with dynamical fermions, using standard charges
for the up and down quarks, namely qu = 2|e|/3 and qd = −|e|/3, therefore the quantization is
given in units of f = 6π/(|e|a2LµLν).

To guarantee the feasibility of numerical simulations, we must preserve the positivity of the
fermion determinant after the addition of the U(1) phases to the SU(3) link variables. This require
that the spectrum of the Dirac matrix in the path integral remains purely imaginary.

However, such condition is not verified if we try to introduce a real electric field in Minkowski
space: it is easy to verify that this would require an imaginary value of the electric field in Eu-
clidean space, which takes the uµ variables out of the U(1) group, making the fermion determinant
complex: this sign problem would hinder numerical simulations.

To circumvent this problem we adopt the following strategy, used also in lattice studies of the
electric polarizability of hadrons [14, 15]: we simulate real magnetic fields ~B and imaginary electric
fields ~E = i~EI in Minkowski space, and then exploit analytic continuation. As a consequence, we
expect to produce a purely imaginary effective parameter θeff = iθIeff.

The presence of an imaginary θI adds a factor exp(θIQ) to the probability distribution of gauge
fields in the path integral. That will shift the distribution of the topological charge by an amount
which, at the linear order in θI , is given by the topological susceptibility χ at θI = 0:

〈Q〉θI 'V χ θI = 〈Q2〉θ=0 θI (2.2)

where V is the spacetime volume. That gives us the opportunity of determining the effective θIeff

produced by a given e.m. field as

θIeff '
〈Q〉(~EI,~B)
〈Q2〉0

+O((~EI · ~B)3) (2.3)

where 〈·〉0 is defined as the average taken at zero e.m. field. In the region of small θIeff, which is
the one relevant to Eq. (1.2), we expect negligible corrections to Eq. (2.3).

3. Results

We performed simulation of N f = 2 QCD at T = 0 for a fixed pseudo-Goldstone pion mass
mπ ' 480 MeV. Different lattice spacings have been explored by tuning the inverse gauge coupling
β and am as described in Ref. [13]. We also used different lattice volumes to check for finite size
corrections (see Fig. 2).

For the determination of Q on gauge configurations, we adopted the standard discretized glu-
onic definition, measured after cooling [16], i.e. recursive minimization of the pure gauge action
to reduce ultraviolet (UV) artifacts. We then rescaled the charge by a constant factor, so that its
distribution gets peaked around an integer values, (see, e.g., Fig 1), and we finally fix Q to the
closest integer (for details and discussions on the used procedure see [13]).
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Figure 1: Observed shift of the topological charge for e2~EI · ~B = 0.47GeV4 on a 164 lattice, for
mπ ' 480 MeV and a ' 0.113 fm, for two values of the e.m. background ~EI · ~B. Left panel: Monte
Carlo histories. Right panel: topological charge distribution.

In the left panel of Fig. 1 we show the Monte-Carlo history of Q for two numerical simulations
performed respectively at ~EI · ~B = 0 and e2 ~EI · ~B ' 0.47 GeV4. We see that, when we switch
on the external fields ~EI · ~B 6= 0, the fluctuations of the topological charge Q shifts from zero
toward positive values, as clearly appears also from the right panel of Fig. 1, where we plot the
corresponding distribution of Q.

To better investigate the effective dependence of 〈Q〉(~EI,~B) on the background field com-
bination ~EI · ~B, in Fig. 2 we show 〈Q〉(~EI,~B)/〈Q2〉0, where data are obtained for a variety of
combinations of ~EI and ~B, mostly taken parallel to the z axis, and then plotted versus ~EI · ~B. The
fact that all data fall on the same curve, even when ~EI and ~B are not parallel, is a nice demonstra-
tion that θIeff is indeed a function of ~EI · ~B alone, as expected. We have also considered different
combinations of the fields having the same or opposite values for ~EI · ~B, to verify explicitly that
θIeff is odd in ~EI · ~B.

For small fields we observe a linear dependence in ~EI · ~B, while for larger fields the observable
shows saturation effects, as common to many systems with a linear response to external stimulation.
All data can be nicely fitted by the function

〈Q〉(~EI,~B)/〈Q2〉0 = a0 atan(a1~E ·~B) , (3.1)

the best fit curve, corresponding to χ2/d.o.f.= 0.74, is shown in Fig. 2.
We expect 〈Q〉(~EI,~B)/〈Q2〉0 to be V independent, because 〈Q〉 and 〈Q2〉0 are both derivatives

of the free energy with respect of θ , so they are proportional to V , and their ratio should be volume
independent. In Fig. 2 we show 〈Q〉(~EI,~B)/〈Q2〉0 for mπ ' 480 MeV and different spacings a and
lattice volumes L4. From the right panel in Fig. 2 we can exclude relevant finite size effects, even
on the smallest volumes explored, corresponding to amπL∼ 4.

Instead, we observed a significant dependence on the UV cutoff until a . 0.15 fm. Apart from
standard lattice artifacts related to the path integral discretization, additional systematic effects
may be related to the method used to determine Q: if a is coarse enough that part of the induced
topological background lives close to the UV scale, then the cooling procedure is expected to
destroy part of such background. However data obtained for a . 0.15 fm are in good agreement
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Figure 2: Left panel: 〈Q〉(~EI ,~B)/〈Q2〉0 for various (~EI , ~B) on a 164 lattice for mπ ' 480 MeV and a' 0.28
fm, where open circles corresponds to non parallel configurations of ~EI · ~B/ f 2, while the dashed line is a
best fit to Eq. (3.1). Right Panel: 〈Q〉(~EI ,~B)/〈Q2〉0 as a function of ~EI · ~B for different spacings a and lattice
volumes L4, and mπ ' 480 MeV. The continuous line corresponds to a best fit to Eq. (3.1) at the smallest
value of a, the dashed line is the corresponding slope at ~EI · ~B = 0. We also plot our preliminary results for
mπ ' 280 MeV.

with each other, especially in the region of small values of ~EI · ~B, where corrections to Eq. (2.3)
should be negligible.

We determined χCP performing best fits of the data in Fig. 2 to the function in Eq. (3.1), in a
range of fields such that e2~EI · ~B< 0.8 GeV4, then considering its slope at ~EI · ~B= 0 and exploiting
Eqs. (1.2) and (2.3). For each slope we obtained a good agreement with a direct linear fit performed
on a narrow region of small ~EI · ~B. Because of the large artifacts at coarse lattice spacing, we
consider only data up to a < 0.15 to extrapolate our result, finding χCP = 5.47(78) GeV−4 (χ2/dof
' 0.1). We also expect an additional ∼ 20% uncertainty on χCP coming out from a 5% systematic
uncertainty in our knowledge of a. Preliminary results obtained on a 164 lattice and for a ' 0.15
fm indicate instead χCP ∼ 10 GeV−4 if mπ ' 280 MeV, suggesting that χCP tends to increase when
approaching the chiral limit.

4. Zero modes

From our lattice results it clearly appears that CP-odd e.m. background have a non trivial
influence on the gluon fields, shifting the total distribution of the topological charge to finite values.
From a naive consideration, these configurations should be suppressed in the path integral, because
of their higher value of the action. Moreover, the axial anomaly equation tell us that a non zero
value of Q is associated with the presence of zero modes in the fermion matrix, which should drop
in the chiral limit, the contribution of these configurations.

To explain the observed phenomena (and the apparent increase of its strength for smaller
masses) one has to consider the full axial anomaly equation, with the inclusion of the U(1) term
brought from the external e.m. fields, QU(1) = ~E ·~B. Then the full axial anomaly equation become:

n−−n+ = Qtot ≡ QSU(3)+NC QU(1) (4.1)
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Figure 3: n−−n+ for three different values of the topological charge QSU(3) and for various combination of
the electric and magnetic fields (here given in units of their quanta).

where QSU(3) and QU(1) are respectively the non-abelian and the abelian contributions to Qtot ,
which is the difference of left handed and right handed zero modes.

To verify explicitly this relation, we measured the number of zero modes in a set of O(40)
configurations, where we have fixed both the topological content and the external fields. To measure
the zero modes we used overlap fermions, which, as well known, can correctly distinguish the
chirality of fermions on the lattice. We explicitly verified the relation (4.1), with NC = 3, for
various external e.m. fields and three different values of the topological charge QSU(3) (see Fig. 3).
So, at least in the chiral limit, the relevant gluonic configurations in the path integral must have
nontrivial QSU(3) in such a way to balance the contributions carried by the electromagnetic part of
the anomaly.

5. Discussion

Our results can be compared with the phenomenological estimate given in Ref. [12], which is
based on the effective couplings of the η and η ′ mesons to two photons and to two gluons, where
the authors found χCP ≈ 0.73/(π2 f 2

ηm2
η ′) ∼ 3 GeV−4. Our measurements suggest that the lattice

QCD result for the effective pseudoscalar QED-QCD interaction is larger, even if of the same order
of magnitude, but one has to consider the different systematics (the phenomenological estimate is
based on a theory with 2+1 light flavors), and the unphysical value of the quark mass used in our
simulations.

Concerning the validity of analytic continuation from imaginary to real electric fields in Min-
kowski space, a real, non-zero and constant electric field, even if infinitesimal, will induce vacuum
instabilities in the thermodynamical limit . On the other hand this should not be true in presence of
an infrared cutoff, i.e. if electric fields are limited in space. Therefore our result should be useful
for the determination of a local effective θ parameter produced by smooth and limited in space CP-
odd e.m. fields. It would be interesting in the future to repeat this analysis with smoothly varying
fields, as well as with physical quark masses and at finite temperature.
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