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Our previous studies of Coulomb gauge Yang-Mills theory are extended to finite temperature.
We investigate the SU(2) static gluon and ghost propagators and show results for the Coulomb
potential, with a focus on the Gribov ambiguity. To compute these quantities at high temperatures
and to solve scaling violations we use the anisotropic Wilson gauge action.
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Introduction

Zero temperature QCD in Coulomb gauge was subject of extensive studies both in the con-
tinuum formulation [1, 2] and on the lattice [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. A summary of our
findings was given in the talk of G. Burgio at this conference [13]. Recently, finite temperature was
investigated in the Hamiltonian variational approach [14] where they found a clear signal of the
deconfinement phase transition in the infrared exponent of the ghost propagator. In the following
we will extend our lattice calculations to finite temperature, in search for a manifestation of the
deconfinement phase transition in Coulomb gauge correlation functions.

1. Lattice setup

In our study we use the anisotropic SU(2) Wilson gauge action which allows us to simulate
a large variety of temperatures (up to 6 TC) at still large lattice volumes. Additionally, scaling
violations in the Coulomb gauge propagators have been shown to get milder for large anisotropies
and are expected to vanish in the lattice Hamiltonian limit (ξ → ∞) [12, 11]. The action is defined
by

S[U ] = ∑
n∈Λ

{
βs

Nc

3

∑
i=1

3

∑
j=i+1

Retr [1−Ui j(n)]+
βt

Nc

3

∑
i=1

Retr [1−U0i(n)]

}

=
β

Nc
∑
n∈Λ

{
1
ξ0

3

∑
i=1

3

∑
j=i+1

Retr [1−Ui j(n)]+ξ0

3

∑
i=1

Retr [1−U0i(n)]

}
with the inverse coupling βs = β/ξ0 in spatial directions and βt = βξ0 in the temporal direction.
We adjusted the bare anisotropy ξ0 to correspond to a renormalized anisotropy ξ = as/at = 4 using
the data from [12]. For scale setting we assume a Wilson string tension of σ = (440MeV)2.

We used lattices of size Nt × 323 where Nt = 128 for T = 0 and Nt ∈ [4,32] for T > TC. For
each dataset 100 configurations where generated with heatbath and overrelaxation updates.

Coulomb gauge on the lattice is implemented by maximizing the functional

Fg[U ](t) =
1

4NcN3
s

Re∑
x,i

tr
[
g(~x, t)Ui(~x, t)g(~x+ ı̂, t)†] (1.1)

in each timeslice with respect to local gauge transformations g(x) ∈ SU(2). Each local maximum
satisfies the Coulomb gauge condition ∂iAi = 0. It is well known, that (1.1) has very many local
maxima which leads to the so-called Gribov problem [15]. To avoid the Gribov problem we try
to find the global maximum of (1.1) by using the simulated annealing algorithm [16] and multiple
restarts of the gauge fixing procedure on random gauge transformations. For the numerical opti-
mization we use a SU(2) implementation of the simulated annealing and overrelaxation algorithm
on GPUs [17].

The Coulomb gauge condition is not complete: a residual space-independent gauge freedom
is left unfixed. We remove this residual gauge freedom by the integrated Polyakov gauge defined in
[8], which is a lattice version of ∂0

∫
d3~x A0(~x, t)= 0. Residual gauge fixing does not affect the ghost

propagator and the Coulomb potential, since these quantities are defined at fixed time t. In each
timeslice t, Coulomb gauge fixing is complete and any space-independent gauge transformation is
just a global transformation.
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2. Gluon propagator

In this study, we decided to use the definition of the static gluon propagator introduced in [8].
There, a factorization of the full propagator in a function of |~p| and a function of |~p|/p0 is found
and used to eliminate the energy dependence. On anisotropic lattices this procedure still works, but
deviations from the factorization are found. Currently, we are investigating if this effect is only due
to the larger uncertainties in the scale setting on the anisotropic lattices or if the simple averaging
used in [11] should be preferred.1

In [8], the SU(2) gluon propagator on isotropic lattices was found to satisfy the Gribov formula

D(|~p|) = 1√
|~p|2 + M4

|~p|2
. (2.1)

This simple ansatz does not work anymore for the propagator on anisotropic lattices. If we want to
keep to a similar form we need to add additional parameters

D(|~p|)
|~p|

=
1√

|~p|4 + γM2 |~p|2 +αM3 |~p|+M4
(2.2)

where we divided by |~p| to get a clearer look at the IR behaviour: a non-diverging value at |~p| → 0
means a vanishing propagator.
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Figure 1: D(|~p|)/ |~p| (a) for T = 0, 1.5TC and 3TC with 5 sets with β ∈ [2.25,2.64] at each temperature.
(b) up to 6TC with 3 or 4 sets with β ∈ [2.49,2.64]

In Fig. 1(a) we show D(|~p|)/ |~p| at T = 0, 1.5TC and 3TC for 5 sets of configurations with the
same parameters β and ξ0 at each temperature. To avoid spurious effects of the fitting procedure
between different T we did a combined fit to (2.2) with 14 parameters: M,α and γ for each T and
a renormalization constant for each (β ,ξ0). The propagator at zero temperature and at 1.5TC does
not show a clear difference. We expect that the small increase around the peak would go away at
weaker coupling and with better statistics. This is also indicated by the propagator at 3TC, where a
distinct difference is now visible, but the propagator is now below the zero temperature propagator.
This behaviour goes on towards higher temperatures (at least up to 6TC), see Fig. 1(b).

1The following qualitative statements about the finite temperature behaviour of the propagator is not affected by the
definition.
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3. Ghost dressing function

The ghost propagator in momentum space is given by

G(|~p|) = d(|~p|)
|~p|2

=
δab

N3
s (N2

c −1)

〈
∑
~x,~y

ei~p(~x−~y) [M−1]ab
(~x,~y)

〉
(3.1)

where M is the discrete Faddeev-Popov operator in Coulomb gauge. The ghost form factor d(|~p|) is
found to behave as a power κ of the momentum |~p| in the infrared and has logarithmic corrections
with anomalous dimension γ in the ultraviolet regime:

d(|~p|)∼ 1
|~p|κ

d(|~p|)∼ 1

logγ

(
|~p|
m

) . (3.2)

In [12] an infrared exponent of κ ≈ 0.5 was found by extrapolating to the Hamiltonian limit
(ξ → ∞) for the zero temperature case. This is in disagreement with findings in the Hamiltonian
variational approach which favor κ = 1 [2]. See also [13].
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Figure 2: The ghost dressing function d(|~p|): (a) for fixed β = 2.5. (b) for T = 1.5TC and 3.0TC from 4 or
5 sets of β ∈ [2.40,2.64].

In Fig. 2(a) we show the ghost dressing function for fixed β . Finite volume effects are under
control in the 128×323 lattices as indicated by the comparison with the 192×483 data. As in the
case of the gluon, the ghost propagator is not sensitive to the deconfinement phase transition: we
started with an IR exponent of about a half at T = 0 and still have the same exponent above TC.
Again, starting from the 3TC data deviations are visible. However, these deviations do not strongly
affect the IR exponent which can be seen in Fig. 2(b). At 1.5TC we find an IR exponent κ = 0.47
and at 3TC we still have κ = 0.46. Both results are in good agreement with the zero temperature
data used in [12] for the extrapolation to the Hamiltonian limit.

In the UV, we find γ = 0.63 and m = 0.22GeV for the 1.5TC propagator. Fitting with fixed
γ = 0.5 gives the same χ2/d.o.f. and results in m = 0.44GeV. For 3TC we get γ = 0.42 with
m = 0.83GeV. Fixing γ to 0.5 is not possible in this case, since χ2/d.o.f. is doubled.
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4. Coulomb potential

The Coulomb potential in momentum space

VC(|~p|) = g2 δab

N3
s (N2

c −1)

〈
∑
~x,~y

ei~p(~x−~y) [M−1(−∆)M−1]ab
(~x,~y)

〉
(4.1)

is expected to behave like VC(|~p|)∼ |~p|−4 as |~p| → 0, corresponding to a linear rising potential in
position space at large distances. However, the extrapolation to the Coulomb string tension σC

lim
|~p|→0

|~p|4VC(|~p|) = 8πσC (4.2)

is challenging for several reasons: (a) the conjugate gradient inversion of the operator is much more
costly than the inversion of the ghost propagator, (b) the potential shows a large Gribov copy effect
(see [7]), (c) the extrapolation is based on very few data points in the IR (see [12, 7]).

With the power of our GPU gauge fixing implementation we are able to do a detailed analysis
of the Gribov copy effect on the Coulomb potential. We fixed the gauge on 5000 random copies
using simulated annealing and overrelaxation. In Fig. 3(a) we compare the potential from the best
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Figure 3: The Coulomb potential |~p|4 VC(|~p|) for fixed β = 2.2 on a 128×323 lattice: (a) on the best gauge
copy after 5, 500 and 5000 restarts for 100 configurations. (b) the raw (non-averaged) data of the best copy
after 5000 restarts (corresponds to the green data points on the l.h.s.).

copy after 5, 500 and 5000 trials for 100 configurations. Comparing 5, 100 (which we omitted in
the plot) and 500 copies the result looks promising: the error bars are drastically reduced and the
potential seems to converge to a stable result. However, after 5000 copies the error bars are again
increased. The reason for this behaviour can be seen in Fig. 3(b) where the raw data points are
plotted. The green, blue and yellow points are from three configurations which are clearly outliers
compared to the red bulk of the remaining configurations. These outliers are from configurations
for which the smallest eigenvalue of the operator M(−∆)−1M is more than one order of magnitude
smaller compared to the smallest eigenvalues of the bulk. At the same time, the difference in the
smallest eigenvalues of the Faddeev-Popov operator M alone is only a factor of 2-3 and the effect
on the ghost propagator from these configurations is small. To accommodate for these outliers in
the statistics we need to incorporate much more configurations.
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Besides the Gribov copy effect, we are faced with huge scaling violations, see Fig. 4. In [7] the
authors already found small scaling violations, though their study was for the gauge group SU(3) in
a regime where discretization effects are smaller. Again, there is no difference at 1.5TC compared
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Figure 4: The Coulomb potential |~p|4 Vc(|~p|) for T = 0,1.5TC and 3TC.

to zero temperature, but at 3TC the potential changes clearly. The large error bars in the 3TC data
is again due to one single outlier. With these problems, we are not able to conclude if at 3TC the
Coulomb string tension changes, though very likely the string tension does not change from T = 0
to 1.5TC.

Conclusions and outlook

We gave results for the gluon propagator, the ghost propagator and the Coulomb potential
at finite temperature. None of these quantities showed a signal of deconfinement up to 1.5TC.
We interpret this observation as an indication that a naive extension of the static Coulomb gauge
propagators on the lattice to finite temperature does not work. The propagators above TC seem to
be dominated by the rising spatial string tension and insensitive to the temporal string tension. This
is also indicated by the rise in the Gribov mass of the gluon propagator.

We also found that the computation of the Coulomb potential by the definition (4.1) is hindered
by several problems. Besides a strong Gribov copy effect, we find large outliers in the statistics and
large scaling violations. With our current computational resources we cannot solve these problems
satisfyingly.

We now investigate definitions of the Coulomb potential based on the temporal gluon propaga-
tor 〈A0A0〉 and partial Polyakov line correlators [18, 19]. Whereas the former, as a quantity defined
at fixed timeslice, might suffer from the same problems, the latter definition seems promising for
Polyakov lines of length ≥ 2 lattice units.
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