
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
3
6
5

Confinement in Coulomb gauge

G. Burgio∗

Institut für Theoretische Physik
Auf der Morgenstelle 14
72076 Tübingen
Germany
E-mail: giuseppe.burgio@uni-tuebingen.de

Markus Quandt
Institut für Theoretische Physik
Auf der Morgenstelle 14
72076 Tübingen
Germany
E-mail: markus.quandt@uni-tuebingen.de

Hugo Reinhardt
Institut für Theoretische Physik
Auf der Morgenstelle 14
72076 Tübingen
Germany
E-mail: hugo.reinhardt@uni-tuebingen.de

Mario Schröck
Institut für Physik, FB Theoretische Physik
Universität Graz
8010 Graz
Austria
E-mail: mario.schroeck@uni-graz.at

H. Vogt
Institut für Theoretische Physik
Auf der Morgenstelle 14
72076 Tübingen
Germany
E-mail: hannes.vogt@uni-tuebingen.de

We review our lattice results concerning the Gribov-Zwanziger confinement mechanism in
Coulomb gauge. In particular, we verify the validity of Gribov’s IR divergence condition for
the Coulomb ghost form factor. We also show how the quark self energy is, like that of the
transverse gluon, IR divergent, thus effectively extending the Gribov-Zwanziger scenario to full
QCD.

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:giuseppe.burgio@uni-tuebingen.de
mailto:markus.quandt@uni-tuebingen.de
mailto:hugo.reinhardt@uni-tuebingen.de
mailto:mario.schroeck@uni-graz.at
mailto:hannes.vogt@uni-tuebingen.de


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
3
6
5

Confinement in Coulomb gauge G. Burgio

1. Introduction

Gribov was the first to notice [1] that for non-Abelian theories most gauge conditions admit
several solutions and the corresponding Faddeev-Popov (FP) mechanism is not sufficient to define
the functional integral beyond perturbation theory. The field-configuration space must therefore be
restricted to a domain, continuously connected to the origin, where the gauge condition possesses
unique solutions. He then showed how, as soon as the fields cross the boundary of such region,
the ghost dressing function acquires a singularity; his “no-pole” condition for the FP-ghost at non-
vanishing momentum is then necessary to implement the restriction to the so called Gribov region.

In particular, in Coulomb gauge, he argued how such restriction can imply a diverging gluon
self-energy, motivating its disappearance from the physical spectrum. QCD in Coulomb gauge
has since then been a fruitful playground in investigating the Gribov-Zwanziger (GZ) confinement
mechanism [1, 2]. In a series of papers [3, 4, 5, 6, 7, 8], briefly summarized here, we have analyzed
the behaviour of the relevant two-point functions at zero temperature on the lattice and compared
them with the corresponding predictions of Hamiltonian variational calculations [9, 10, 11].

Gribov based his conjectures on more or less heuristic arguments, which Zwanziger later tried
to put on a more solid basis, while variational calculations, viable in Coulomb gauge since they
by-pass the explicit construction of the gauge invariant Hilbert space [12], did provide some in-
sight on the relation of the GZ-mechanism to the Hamiltonian formulation. In both cases, however,
approximations need to be made; although many authors tackled the problems during the years
[13, 14, 15, 16, 17, 18], a satisfactory non-perturbative cross-check from lattice calculation was
hindered for a long time by the presence of strong discretization effects. We have shown [3, 7, 8]
how for each propagator a mixture of improved actions and separate treatment of their energy de-
pendence can quite effectively solve such problems, allowing an explicit check of the GZ-scenario.
In particular, anisotropic actions prove to be very useful [19, 20]; details can be found in [8], as well
as a description of the gauge fixing algorithm, which adapts those introduced in [22, 23]. Following
the ideas in [3], a first anisotropic analysis in SU(3) had been attempted in [24].

From the continuum analysis and from our results in [3, 4] we know that in the pure gauge
sector the static gluon propagator, the static Coulomb potential and the ghost form factor should
obey:

D(~p) =
|~p|√
|~p|4 +M4

VC(~p) =
8πσC
|~p|4

+
η

|~p|2
+O(1)

d(~p)'


1
|~p|κgh |~p| � Λ

1

logγgh
|~p|
m

|~p| � Λ

(1.1)

where the Gribov mass M ' 1 GeV and for the gluon self-energy ωA = D−1(~p) holds. The quark
propagator, the fermion self energy and the running mass M(|~p|) should take the form [7]:

S(~p, p4) =
Z(~p)

i~p/+ ip/4α(~p)+M(~p) ωF(|~p|) =
α(|~p|)
Zn(|~p|)

√
~p2 +M2(|~p|)

M(|~p|) = mχ(mb)

1+b
|~p|2

Λ2 log
(

e+
|~p|2

Λ2

)−γ +
mr(mb)

log
(

e+
|~p|2

Λ2

)γ ,
(1.2)
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where Z is the field renormalization function, α the energy renormalization function, mb the bare
quark mass, mχ(mb) the chiral mass and mr(mb) the renormalized running mass [7]. The exponent
n in the rhs of ωF depends on the exact definition of the self energy to be compared with the
hamiltonian approach.

2. Results

2.1 Ghost form factor

A careful analysis of the ghost form factor in the Hamiltonian limit at → 0 shows that its
UV behaviour agrees with Eq. (1.1), with γgh = 1/2, confirming continuum predictions, and m =

0.21(1) GeV, see Fig. 1 (a). In the IR going to higher anisotropies increases the exponent κgh, as
shown in Fig. 1 (b), where we plot |~p|κm d(~p), with κm the IR exponent for ξ = 1, as a function
of the anisotropy. The limit ξ → ∞ gives κgh & 0.5, confirming the GZ-scenario. This however
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Figure 1: (a): UV behavior of d(~p) compared with Eq. (1.1). (b): IR behavior of |~p|κm d(~p), both for
different anisotropies ξ .

disagrees with some continuum predictions κgh = 1, deriving from the assumption of the finiteness
of the static ghost-gluon vertex. Whether this is indeed correct and algorithmic improvements
could change the lattice result is still a matter of investigation.

2.2 Coulomb potential

In Fig. 2 (a) we show |~p|4VC(|~p|) as obtained from different anisotropies. Somewhat boldly
fitting the results to Eq. (1.1) we get, in the Hamiltonian limit ξ → ∞, σC = 2.2(2)σ as expected
from Zwanziger’s predictions [25]. See the talk of H. Vogt in this conference for a more “honest”
discussion.
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Figure 2: (a): Infrared behavior of |~p|4 VC(~p)/(8πσ) for different anisotropies ξ . (b): Quark field renor-
malization function Z(|~p|).

2.3 Quark propagator

Our calculations were all made on a set of configurations generated by the MILC collaboration
[26], see [7] for details. The use of improved actions is crucial to establish the scaling properties
of the Coulomb gauge quark propagators. This is very similar to the situation in Landau gauge, see
e.g. [27, 28, 29], whose techniques we have adapted to our case.

Fig. 2 (b) shows the scaling of the renormalization function Z(|~p|) for configurations calculated
at similar bare quark mass, while the RG-invariant functions α(|~p|) and M(|~p|) are given in Fig. 3.
Their behaviour agrees with theoretical expectations, see Eq. (1.2).
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Figure 3: (a): Energy renormalization function α(|~p|). (b): Running mass M(|~p|).
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Our most interesting results are given in Fig. 4. Analogously to the gluon self-energy ωA(|~p|),
the quark self energy ωF(|~p|) has a turn-over at |~p| ∼ 1 GeV, clearly departing from the behaviour
of a free particle, and diverging in the IR, see Fig. 4 (a); although awaiting confirmation on larger
lattices, this extends the Gribov argument to full QCD. Moreover, as Fig. 4 (b) shows, the run-
ning mass M(|~p|) we obtain is quantitatively compatible with our phenomenological expecta-
tions from chiral symmetry breaking. Fitting it to Eq. (1.2) we obtain b = 2.9(1), γ = 0.84(2),
Λ = 1.22(6) GeV, mχ(0) = 0.31(1) GeV, with χ2/d.o.f.= 1.06.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.5  1  1.5  2  2.5  3  3.5

M
(p

2
) 

[G
e
V

]

|k| [GeV]

203x64, a=0.121  fm, m = 63.1 MeV

203x64, a=0.121  fm, m = 47.3 MeV

203x64, a=0.120  fm, m = 31.5 MeV

203x64, a=0.119  fm, m = 15.7 MeV

203x64, m = 0.0 MeV

(a)

0 0.5 1 1.5 2 2.5 3 3.5
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

|k| (GeV)

ω
F

 

 

quenched

unquenched

(b)

Figure 4: (a): Quark self energy ωF(|~p|). (b): Running mass M(|~p|) in the chiral limit mb→ 0; see Eq. (1.2).

3. Conclusions

We have shown that lattice calculations confirm the GZ confinement scenario in Coulomb
gauge at T = 0. The ghost form factor d(|~p|) is IR divergent with an exponent κgh & 0.5, which
implies Gribov’s no-pole condition and a dual-superconducting scenario [30]; the gluon propagator
satisfies the Gribov formula, implying an IR diverging self-energy, and the Coulomb potential
seems compatible with a string tension roughly twice the physical string tension. Moreover from
the quark propagator we can extract the quark self energy ωF(|~p|), which is compatible with an
IR divergent behaviour, and the running mass M(|~p|), which gives a constituent quark mass of
mχ(0) = 0.31(1) GeV.

The situation in Coulomb gauge seem to be easier than in Landau gauge, where BRST sym-
metry is non-perturbatively broken, violating the Kugo-Ojima confinement scenario [31], while the
GZ confinement scenario is realized explicitly introducing of an horizon function, see e.g. [32] for
a recent review; its physical implications and how these can be related to the presence of dim-2
condensates [33, 34, 35] are an interesting issue still debated in the literature [36].
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