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Heavy-meson semileptonic decays A. S. Kronfeld

1. Introduction

In this report, we consider the form factors for two semileptonic processes: Bs → K`ν and
B→ K``. With lattice QCD, their analysis runs on parallel tracks, but their physics motivations
differ. The first is a b→ u transition and can be used—with measurements from Belle II or LHCb—
to determine the CKM matrix element |Vub|. The other is a b→ s transition; because the standard
model (SM) amplitude is a one-loop penguin diagram, it could be sensitive to non-SM physics,
sought by Belle, BaBar, CDF, LHCb, and Belle II [1].

We compute the vector, scalar, and tensor form factors, defined by (q̄ denotes s̄, d̄, or ū)

〈K(k)|q̄γ
µb|B(s)(p)〉 =

[
pµ + kµ − (M2

B(s)
−M2

K)q−2 qµ

]
f+(q2)+(M2

B(s)
−M2

K)q−2 qµ f0(q2)

=
√

2MB(s)

[
vµ f‖(EK)+ kµ

⊥ f⊥(EK)
]
, (1.1)

〈K(k)|q̄b|B(s)(p)〉 = f0(q2)
(

M2
B(s)
−M2

K

)
/(mb−mq), (1.2)

〈K(k)|q̄iσ µνb|B(s)(p)〉 = 2 fT (q2)(pµkν − pνkµ)/
(

MB(s) +MK

)
, (1.3)

where q = p− k, vµ = pµ/MB(s) , kµ

⊥ = kµ − (v · k)vµ , and the kaon energy EK is related to q
via q2 = M2

B(s)
+ M2

K − 2MB(s)EK . In the limit of a very heavy B(s) meson, fT (q2) = (MB(s) +

MK)(2MB(s))
−1/2 f⊥(EK)+O(1/mb). We obtain the matrix elements from three-point correlation

functions and the energies and amputation factors from two-point correlation functions [2, 3, 4, 5].
The ensembles of lattice gauge fields are listed in Table 1. They employ an improved gluon

action and the asqtad action for 2+ 1 flavors of sea quark. For the valence quarks, we again use
the asqtad action for the light quarks, and the Fermilab method for the heavy b quark. We match
the lattice currents to the continuum with the mostly nonperturbative method of Ref. [7]. We have
used our experience with B→ K`` to guide the run plan for Bs→K`ν . The HPQCD Collaboration
has used these ensembles for B→ K`` [8], with special emphasis on phenomenology [9].

Our two analyses share many common features. In the past [3, 4], we reported on the correlator
fits for B→ K``. In Sec. 2, we outline the analogous steps for our analysis of Bs→ K`ν . Then we
discuss the chiral-continuum extrapolation of B→ K`` in Sec. 3. Future work on this aspect of the
Bs→ K`ν analysis will follow a similar strategy. Some outlook is given in Sec. 4.

2. CKM Mode BBBsss→→→ KKK `̀̀ννν

To obtain kaon energies, the Bs mass, and amputation factors, we fit the meson two-point data
to the functional form

Css′(t) =
N−1

∑
n=0

[
An,sAn,s′

(
e−Ent + e−En(NT−t)

)
− (−1)tA′n,sA

′
n,s′

(
e−E ′nt + e−E ′n(NT−t)

)]
, (2.1)

where the subscripts s and s′ denote the source and sink, the coefficients An,s denote the projection
of source or sink s onto the nth excitation, and N is the number of states retained in the fits. The
second tower of states arises because with staggered fermions parity is nonlocal in time. We use a
local source and sink for the kaon, and a 1S-smeared source and both local and 1S-smeared sinks
for the Bs meson. This combination has worked well in our B→ π [2, 5] and B→K [3, 4] projects.
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Heavy-meson semileptonic decays A. S. Kronfeld

Table 1: Ensembles used in the FCNC B→ K`` project, with valence strange mass equal to the sea strange
mass. The CKM Bs→ K`ν project used a valence strange mass closer to the physical value, on the subset
with an entry for amval

s (Bs). A full description of these ensembles can be found in Ref. [6].

a (fm) N3
S ×NT aml/ams # confs # sources amval

s (Bs) amval
s (B)

≈ 0.12 203×64 0.01/0.05 2259 4 0.05
≈ 0.12 203×64 0.007/0.05 2110 4 0.05
≈ 0.12 203×64 0.005/0.05 2099 4 0.0336 0.05
≈ 0.09 283×96 0.0124/0.031 1996 4 0.031
≈ 0.09 283×96 0.0062/0.031 1931 4 0.0247 0.031
≈ 0.09 323×96 0.00465/0.031 984 4FCNC 8CKM 0.0247 0.031
≈ 0.09 403×96 0.0031/0.031 1015 4FCNC 8CKM 0.0247 0.031
≈ 0.09 643×96 0.00155/0.031 791 4 0.0247 0.031
≈ 0.06 483×144 0.0036/0.018 673 4 0.0188
≈ 0.06 643×144 0.0018/0.018 673 4 0.0177 0.0188

We fix the number of states N = 3 for all correlator fits. Figure 1 shows an example of an
effective mass plot and a stability plot for the Bs meson, on the a≈ 0.12 fm, aml/ams = 0.005/0.05
ensemble. We use these plots to choose fit intervals [tmin, tmax] and to set loose Bayesian priors for
the ground states. We take priors of moderate width for excited states. The goodness of fit p value
is calculated from the degrees of freedom and the augmented χ2, which includes contributions
from the priors. With our moderate priors, the effective count of degrees of freedom lies between
the usual count (# of data points minus # of parameters) and the augmented one (# of data points).
We use the former in Fig. 1, so the plotted p values are underestimates.

To obtain the semileptonic matrix elements, we fit the three-point data to the functional form

Cµ

ss′(t,T ) =
N−1

∑
m,n=0

(−1)mt(−1)n(T−t)AK
m,sV

µ
mnABs

n,s′e
−Em

K te−Mn
Bs (T−t), (2.2)

where V µ
mn = 〈Km|V µ |Bs,n〉/

(
2Em

K 2Mn
Bs

)1/2 yields the form factors. We put the kaon at several
source times (“# sources” in Table 1) and choose two different locations for the Bs-meson sink,
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Figure 1: Bs two-point correlator with kkk = 000 for the a ≈ 0.12 fm, aml/ams = 0.005/0.05 ensemble. The
effective mass plot (left plot) leads us to choose the prior shown in green. In the same vein, we use scaled
correlators Css′(t)eMefft to set priors on An,s(′) . The fitted Bs mass (right plot, left axis) and p value (right plot,
right axis) lead us to choose tmin = 3. The p-value calculation is explained in the text.
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Heavy-meson semileptonic decays A. S. Kronfeld

T = Tsink and Tsink + 1. We perform a combined fit to the two-point and three-point correlation
functions. The three-point fitting ranges are chosen to be between tK

min and T − tBs
min, with T = Tsink

or Tsink +1. To set the prior for V µ

00, we follow a strategy like that explained with Fig. 1.
In Refs. [2] and [4], we used a plateau fit to a ratio of two- and three-point functions. Here, we

carry out a combined fit, so that we can easily take the excited states’ contributions into account.
Figure 2 shows that the fitted V µ

00 lies above the ratio R̄ constructed from the two- and three-point
data, again on the a≈ 0.12 fm, aml/ams = 0.005/0.05 ensemble, with kkk = 000. The difference stems
from the excited state contribution. Ignoring it yields a value for V µ

00 with a small bias, which with
our current statistics is significant in some cases, such as the one shown in Fig. 2.

We have completed these fits for all ensembles indicated in Table 1. Since the conference, we
have begun to carry out the chiral-continuum extrapolation. Our approach will follow that of our
B→ K`` work, which is discussed in the next section.
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Figure 2: The form factor from different fits. The green band is the combined fit discussed in the text. The
blue points are the ratio used in Refs. [2] and [4]; the plateau lies a bit lower. The black curve shows the
combined fit’s reconstruction of the ratio, showing that the small difference comes from excited states.

3. FCNC Mode BBB→→→ KKK `̀̀ `̀̀

We calculate B→ K`` form factors from the ratio of three-point and two-point correlation
functions. In general, B→ K`` has larger errors than Bs → K`ν . In this case, we find that the
plateau fit is consistent, within errors, with the combined fit of Sec. 2. We choose the simpler fit
for this analysis. To obtain physical results, we perform a chiral-continuum extrapolation using
heavy-light meson staggered chiral perturbation theory (HMSχPT) [10]. We have found that next-
to-next-to-leading order SU(3) HMSχPT does not describe the f‖ data well [3, 4]. The fits have low
p values, and the curves behave unphysically for EK outside the range where we have data. On the
other hand, SU(2) HMSχPT [11] describes the data well, even at next-to-leading order (NLO).

For our main fit, we consider the functional form,

fpole =
C(0)

fπ(EK +∆B∗s )

[
1+ logs+C(1)

χ
val
l +C(2)

χ
val
s +C(3)

χE +C(4)
χa2

]
, (3.1)

where the dimensionless quantities χi are defined in Ref. [2]. We include the strange-quark mass
related term C(2)χval

s to account for ms dependence in C(0). Equation (3.1) builds in a pole in
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EK at −∆B∗s , where ∆B∗s = MB∗s −MB. For f⊥ and fT , we use the lowest-lying, JP = 1− pole and
set ∆B∗s = 0.1358 GeV. For f‖, one should look at structures in the JP = 0+ channel for EK < 0
or, equivalently, q2 > (MB(s) +MK)

2. Now no single state clearly dominates the physical region.
Without attaching a deep meaning to it, we simply incorporate one pole into the fit, with a prior of
central value ∆B∗s = 0.44 GeV [12] and width 0.50 GeV. We impose Gaussian priors with central
values 0 and width 2 on the NLO parameters C(i). The chiral logarithms in Eq. (3.1) depend on
the B-B∗-π coupling, gπ , which we constrain with a prior of central value 0.45 and width 0.08,
based on recent direct calculations [13, 14]. Finally, we add further terms to Eq. (3.1) to describe
heavy-quark discretization effects, in the manner used for heavy-light decay constants [15]. The
data and chiral-continuum fits are shown in Fig. 3.

Our chiral-continuum extrapolation incorporates statistical errors, an uncertainty in gπ , and
heavy- and light-quark discretization effects. We must, however, consider additional sources of
uncertainty, stemming from the choice of fitting Ansatz, as well as from heavy-light current renor-
malization, lattice-scale determination, light-, strange-, and heavy-quark mass tuning, and finite
volume effects. For example, we have also removed the pole form from the f‖ fits, modeling the
curvature in EK with an extra term in the series inside the bracket. Our estimates for the statistical
and systematic errors are shown, as a function of q2 in Fig. 4.

Our chiral-continuum extrapolation results only cover a limited range of EK (or q2), for several
reasons. In particular, the HMSχPT description breaks down for large EK . In order to extend the
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Figure 3: Chiral-continuum extrapolations of (left to right) f‖, f⊥, and fT with NLO SU(2) HMSχPT. Bars,
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Figure 4: Statistical and systematic error contributions to (left to right) f+, f0, and fT . The left vertical axis
shows the squares of the errors added in quadrature, while the right vertical axis shows the errors themselves.
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form factors to higher kaon energy, i.e., to q2 = 0, we use the model-independent z expansion. This
method maps q2 to a new variable z such that |z|< 1,

z(q2, t0) =

√
t+−q2−√t+− t0√
t+−q2 +

√
t+− t0

, (3.2)

where t± = (MB±MK)
2, and we take t0 = (MB +MK)(

√
MB−

√
MK)

2 [16]. The physical region
of q2 is mapped onto the real interval |z| < 0.16. We apply this mapping to the output of the
chiral-continuum extrapolation (Fig. 3) with the full error budget (Fig. 4).

With the new variable z, we expand the form factors as [16]

f+,T (q2) =
1

1−q2/M2
B∗s

K−1

∑
k=0

bk

[
zk− (−1)k−K k

K
zK
]
, (3.3)

f0(q2) =
1

1−q2/M2
B∗s

K−1

∑
k=0

bkzk, (3.4)

where M2
B∗s

accounts for the location of the pole in the form factors. We use here the same pole
positions as in the chiral-continuum fit. To obtain the bk, we generate five synthetic data points
at q2 = (22.86,21.59,20.21,18.70,16.86) GeV2. Because Eq. (3.1) has only two EK-dependent
pieces of information, we impose an SVD cut when inverting the covariance matrix. We fit f+
and f0, which are linear combinations of f⊥ and f‖, together, keeping the four highest eigenmodes
total. For fT we keep two. Fits to Eqs. (3.3) and (3.4) with K = 2 or 3 are good and also naturally
preserve the kinematic condition f+(0) = f0(0), provided we include the scalar pole in f0.

Having seen that the kinematic condition arises naturally, our central fits impose it as a con-
straint. This step gives better control of the extrapolation error at low q2. Unitarity, analyticity,
and heavy-quark physics place upper bounds on ∑ jk b jB jkbk, where B jk is a matrix explained in
Ref. [16]. The heavy-quark bound is more restrictive but only semiquantitative [17]. We put a prior
on ∑ jk b jB jkbk of central value zero and width of 0.1 for f+ and fT , and width 0.3 for f0, which
correspond to conservative interpretations of the heavy-quark bound. Figure 5 shows the outcome
of these fits. These results are nearly final, and we plan to publish the z-expansion coefficients with
their errors and correlations, so that the final output of our analysis can be used elsewhere.
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Figure 5: Final z-expansion fit of f+ & f0 (left) and fT (right) vs. q2 with full error band. Here we use three
b j for each form factor and impose the kinematic condition f+(0) = f0(0).
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4. Outlook

Our nearly final results for B→ K`` will have errors roughly of 3–8%, for q2 > 17 GeV2. For
smaller q2, the form factors become small and inevitably have large relative error. These results
provides a reasonable forecast of the error budget for Bs→ K`ν , once that project is complete.
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