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1. Introduction

The semileptonic decays of the D meson have been actively studied since many years both
in theory and in experiment. A comparison of the experimental results for the full or differential
decay width with the theoretical expressions, derived within the Standard Model (SM), allows us
to extract the Cabibbo–Kobayashi-Maskawa (CKM) matrix elements |Vcd | (from D→ π`ν) and
|Vcs| (from D→ K`ν). Alternatively, one can fix the CKM couplings from the leptonic decays,
or by imposing the unitarity of the CKM matrix, and search for the effects of physics beyond the
Standard Model (BSM). For that research to be possible a considerable experimental progress has
been achieved in the past decade, mostly thanks to the experiments at CLEO [1]), BaBar [2] and
Belle [3] where the partial decay width has been accurately measured as a function of q2, the square
of the four-momentum transfered to the leptons. On the theory side the most significant progress
has been made in the field of lattice QCD where in the computation of the form factors f D→π

+,0 (q2)

and f D→K
+,0 (q2) the effects of dynamical quarks have been included [4].

The theoretical SM estimate of the differential decay width in the D− meson rest frame reads,

dΓ(D0→ π−`ν`)

dq2 =
G2

F |Vcd |2

24π3 |~pπ |3 | f+(q2)|2 , (1.1)

where we neglected the term proportional to the mass of the lepton squared, which is a very good
approximation since no τ-lepton can emerge from this decay. The vector form factor f+(q2) en-
codes the non-perturbative QCD dynamics of the decay and should be estimated by means of
numerical simulations of QCD on the lattice. In extensions of the SM predicting the existence of a
charged scalar boson (such as any model in the scenario with two Higgs doublets, 2HDM), a term
proportional to the scalar form factor f0(q2) is not helicity suppressed any more, and its impact
on the decay width might be significant. Finally, if a tensor coupling of quarks and leptons to
gauge bosons BSM is allowed then a term proportional to the tensor form factor becomes numeri-
cally significant as well. This form factor is also required for the theoretical description of the rare
D→ π`+`− decays.

In summary, for a full phenomenological analysis of the semileptonic decays one needs not
only a reliable QCD based estimate of the form factor f+(q2) but also that of f0(q2) and fT (q2). 1

The above discussion and eq. (1.1) refer to D→ π`ν , and it is equally applicable to D→ K`ν after
replacing π → K and Vcd →Vcs.

In this note we present our preliminary results for the form factors f D→K/π

+,0,T (q2), obtained by
using the QCD gauge field configurations generated by employing the (maximally) twisted mass
QCD on the lattice [5] with N f = 2 dynamical light flavors, produced by the European Twisted Mass
collaboration (ETMC) [6]. The results presented here represent a significant improvement of the
previous (partial) study made in ref. [7], namely: i) simulations performed at smaller lattice spacing
have been included in the analysis, ii) smearing of the source operators has been implemented in
order to increase their overlap with the ground states of the in and out hadrons; c) the more refined
value of the charm quark mass of ref. [8] has been used.

1Semileptonic decay width derived by using a generic BSM effective lagrangian can be found in e.g. ref. [9].
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This writeup is based on the statistics available at the time of the presentation at the conference.
Since then, we increased the statistics and improved our analysis in several aspects. The final results
will soon be presented in a separate publication.

2. Lattice and kinematical setup

To make this computation we benefited from the publicly available gauge field configurations
that include N f = 2 dynamical light quarks, generated by employing the twisted mass QCD action
at maximal twist by the ETMC. (see refs. [6, 8]). In tab. 1 we provide the main information con-
cerning the statistics and the parameters used in our calculations, together with the renormalization
constants ZV (g2

0) and ZT (g2
0,µ).

β 3.80 3.90 4.05 4.20
L3×T 243×48 243×48 323×64 323×64
# meas. 240 240 150 150

µsea 0.0080, 0.0110
0.0040, 0.0064, 0.0030, 0.0060,

0.0065
0.0085, 0.0100 0.0080

a [fm] 0.098(3) 0.085(3) 0.067(2) 0.054(1)
ZV (g2

0) [10] 0.5816(2) 0.6103(3) 0.6451(3) 0.686(1)
ZT (g2

0) [10] 0.73(2) 0.750(9) 0.798(7) 0.822(4)
µc [8] 0.2331 0.2150 0.1849 0.1566
µs [8] 0.0194 0.0177 0.0154 0.0129

Table 1: Summary of the lattices used in this work (for more information see ref. [8]). Notice that the non-
perturbatively evaluated ZT is converted to the MS renormalization scheme at the scale µ = 2 GeV.

As in our recent study [11], we employ a mixed-action setup. All quark propagators are
computed by using stochastic sources, and in the computation of the correlation functions we used
the so-called one-end trick [6]. In our kinematical setup the D-meson interpolating operator is
placed at t = T/2 and is kept at rest (|~pD| = 0), whereas the K/π-meson interpolating operator is
placed at t = 0 and is given different values of the three-momentum in order to cover the physically
relevant kinematical range, namely q2 ∈ [0,(mD−mπ/K)

2]. The weak interaction hadronic matrix
element entering the D→ π`ν` decay amplitude is conveniently parameterized as

〈π(pπ)|Vµ |D(pD)〉= (pD + pπ)µ
f+(q2)+qµ

m2
D−m2

π

q2

[
f0(q2)− f+(q2)

]
, (2.1)

where Vµ = c̄γµd, q = pD− pπ , and the form factors f D→π
+,0 (q2) are functions of q2 ∈ [0,q2

max]. The
case q2 = q2

max ≡ (mD−mπ)
2 is peculiar, as only f0(q2

max) can be determined. As for the matrix
element of T0i = c̄σ0id, it is parameterized via

3

∑
i=1
〈π(~pπ)|T0i|D(~0)〉=−i

2mD fT (q2)

mD +mπ

~pπ . (2.2)

Similar relations are valid for the case of D→ K`ν too.
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The extraction of the hadronic matrix element on the lattice proceeds through the computation
of the three- and two-point correlation functions. For example, to access 〈π(pπ)|Vµ |D(pD)〉 we
compute the three-point correlation functions:

CV
µ (~q; t) = ∑

~x,~y
〈Pcu(~0,0)Vµ(~x, t)P

†
ud(~y,T/2)e−i~q(~x−~y)〉 ,

where~q=−~pπ . The interpolating source operators, Pcu = ūγ5c and Pud = ūγ5d, are defined in terms
of the quark field obtained by applying the Gaussian smearing, Q = H ·Q, where the operator H
and the choice of smearing parameters are the same as those discussed in ref. [17]. In terms of the
quark propagators the correlation function (2.3) reads

CV
µ (~q; t) = 〈∑

~x,~y
Tr
[
γ5Su(0,y;U)γ5S~θd (y,x;U)γµSc(x,0;U)

]
〉 , (2.3)

where yt = T/2, xt = 0, and U denotes the background gauge field configuration. We give the light
meson a three-momentum by imposing the twisted boundary condition on the d quark propaga-
tor [12, 13, 14], labelled by the superscript ~θ . In addition to the above three-point correlation func-
tions, we also studied large time behavior of the two-point correlators to determine mD, Eπ(~pπ),
ZD(~0) ≡ZD, and Zπ(~pπ), which are needed in order to remove the sources from the three-point
correlation functions and to access the vector current matrix element. It appears that the energy
of the state can be very well reconstructed from its mass by using the lattice dispertion relation as
shown in [11]. We extract the desired hadronic matrix element from the ratio

Rµ(t) =
4mDEπ(~pπ)Cµ(t)

ZDZπ(~pπ)exp(−mDt)exp [−Eπ(~pπ)(T/2− t)]
0� t� T/2
−−−−−−−−−→ 〈π(~pπ)|Vµ |D(~0)〉 .

(2.4)
In a completely similar way one extracts the matrix element of the tensor density, 〈π(~pπ)|T0i|D(~0)〉.
The above discussion can be trivially extended to the D→ K`ν case.

3. Getting to the physical result

We show in fig. 1 an example of the effective mass of the D-meson as obtained from the
computation of the two-point correlation functions with both local or smeared sources. The matrix
elements 〈π(~pπ)|V0|D(~0)〉 are extracted from the plateau of the ratio defined in eq. 2.4.Combining
those with the matrix elements 〈π(~pπ)|Vi|D(~0)〉, we were able to extract the form factors f+,0(q2).
Similarly we obtain our results for fT (q2). Results for the tensor form factor are given by using
the MS scheme at µ = 2 GeV. The above procedure is repeated for all of our 10 lattice ensembles.
While for the D→K`ν decay one needs to extrapolation only the spectator quark mass, the case of
the D→ π transition is more delicate as both the spectator and the quark entering the vertex need
to be considered.

3.1 Method 1: Extrapolation at fixed q2

We first interpolate our form factors in such a way that they correspond to several fixed values
of q2

fix in the continuum. Those form factors are then simultaneously extrapolated to the continuum
and to the chiral limit by fitting our data to

f latt
+,0,T (q

2
fix,a

2,m2
π) = f+,0,T (q2

fix,0,0)
(
1+α a2 +βm2

π

)
, (3.1)
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Figure 1: Left panel: effective mass of the two points correlation function for the D meson. Right panel: extraction
of the 〈π|V0|D〉 matrix element according to eq 2.4. The examples are shown is for L = 24, β = 3.90, µsea = 0.0085.
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Figure 2: Left panel: chiral and continuum extrapolation of the f D→π
+ form factor at a fixed value of q2, according to

a linear polynomial in a2 and m2
π , cf. eq. (3.1). Right panel: linear fit of FD→π

+ (z), defined as in eq. (3.2) for a particular
value of the lattice spacing and for two different values of the light sea quark mass.

where a is the lattice spacing and f+,0,T (q2
fix)≡ f+,0,T (q2

fix,0,(m
phys
π )2) is our desired result. In this

way we were able to cleanly disentangle the chiral and continuum extrapolation from the study of
the shape of the form factor as a function of q2. However, since the range of three-momenta needed
to cover the entire physical region q2 ∈ [0,q2

max] grows with the decrease of the pion mass and
of the lattice spacing, with this method we cannot cover the whole range of physical q2’s needed
for D→ π`ν decay in the continuum. An example of the simultaneous chiral and continuum
extrapolation of the form factor f D→π

+ (q2
fix) for q2

fix = 1.35 GeV2 is shown in the left panel of fig. 2.

3.2 Method 2: Extrapolation of the parameters

An alternative approach consist in discussing the dependence of the form factors on the vari-
able z, which is related to q2 via, z = (

√
t+−q2−√t+)/(

√
t+−q2 +

√
t+), where t+ = (mD +

mπ)
2. There are several ways to parameterize the dependence of the form factors on z. One of

them was recently proposed in ref. [15] in which the authors factored out the contribution coming
from the nearest pole, and then parameterize the rest as a polynomial in z, defining

F+,T (q2)≡ f+,T (q2) ·
(

1− q2

m2
1−

)
, F0(q2)≡ f0(q2) ·

(
1− q2

m2
0+

)
, (3.2)
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Figure 3: Form factors f D→π
+,0 (left panel) and f D→K

+,0 (right panel) extrapolated to the continuum limit and mphys
π . For

the case of f D→π
+ we compare also with the experimental results from CLEO [1].

where m1−,0+ are the masses of the lowest vector/scalar meson exchanged in the t-channel (m1− =

mD∗ and m0+ = mD∗0 in the case of D→ π). The lattice data F+,0,T (z), for each of our 10 ensembles,

are then fit to a polynomial in z, namely Fi(z) = c(i)0 (a2,m2
π)+ · · ·+ c(i)n (a2,m2

π)z
n. In the present

study we limited our analysis to n = 1 since that adequately describes our data. In the right panel of
fig. 2 we show an example of FD→π

+ (z) as a linear function of z for two different values of the sea
quark mass. The coefficients ci(a2,m2

π) can be extrapolated to the continuum limit in a way similar
to eq. (3.1). The resulting form factor is converted back to its q2-dependence and we arrive to the
analytical parameterization of the form factors in the continuum and at the physical pion mass.

For the case of the tensor form factor we adopt a slightly different procedure and consider
the ratio RT/V (q2) = fT (q2)/ f+(q2), since the nearest pole contributing to the both form factors is
the same vector meson D∗, and since that contributions cancels in the ratio to a large extent it is
interesting to check for the flatness of RT/V (q2).

4. Preliminary results

In fig. 3 we show the comparison of the form factors f+,0(q2) as obtained by using the two
methods discussed above, for both D→ π and D→ K form factors. The agreement between the
two methods is good, and the f D→π

+ agrees well with experimental data reported by CLEO [1].
The z parametrization allows to cover the whole kinematical range available in the continuum at
the physical mass of the pion. Similarly, one can use any model to parameterize the form factors
obtained at various fixed q2’s in the continuum limit. We believe we are also in a unique position
to check for the difference between the f D→π

+ (q2) and the contribution of the first pole. To that end
we remind the reader that the first pole contribution to the vector form factor reads,

f pole
+ (q2) =

1
2

fD∗mD∗gD∗Dπ

m2
D∗−q2 . (4.1)

More specifically, in ref. [16] we found fD∗ = 278(16) MeV, while in ref. [17] we obtained gD∗Dπ± =

15.8(8). In the left panel of fig. 4 we show a comparison of the results of the vector form factor
f D→π
+ (q2) with with its nearest pole contribution (vector meson dominance, VMD). We see that

6
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Figure 4: Left panel: comparison of the D→ π vectorial form factor with the prediction of Vector Meson Dominance
model. Right panel: result of the ratio between tensorial and vectorial form factor for D→ K decay.

the first pole does not saturate the form factor at all, and that the contributions coming from other
singularities are significant and, in total, negative.

We present in fig. 4 a comparison of the ratio RT/V (q2)D→π as obtained with two methods
discussed above. The determination of the tensor form factor (not presented in any lattice studies
of D-decays before) indicates a slight slope of the ratio RT/V (q2)D→π , which is a departure from
the flat behavior that can be deduced from the consideration in the heavy quark effective theory.
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