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We will report on the first full calculation of the KL −KS mass difference in lattice QCD. The

calculation is performed on a 2+1 flavor, domain wall fermion, 243×64 ensemble with a 329 MeV

pion mass and a 575 MeV kaon mass. Both double penguin diagrams and disconnected diagrams

are included in this calculation. The calculation is made finite through the GIM mechanism by

introducing a 949 MeV valence charm quark. While the double penguin diagrams contribute

a very small fraction to the mass difference, there is a large cancellation between disconnected

diagrams and other types of diagrams. We obtain the mass difference ∆MK=3.30(34)× 10−12

MeV for these unphysical kinematics.
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1. Introduction

The kaon mass difference ∆MK with a value of 3.483(6)×10−12 MeV [1] led to the prediction

of charm quark fifty years ago. This extremely small mass difference is believed to arise from

K0-K
0

mixing via second-order weak interaction. However, because it arises from an amplitude

in which strangeness changes by two units, this is a promising quantity to reveal new phenomena

which lie outside the standard model. In perturbation theory calculation, the standard model con-

tribution to ∆MK is separated into short distance and long distance parts. The short distance part

receives most contributions from momenta on the order of the charm quark mass. As pointed out

in the recent NNLO calculation [2], the NNLO terms are as large as 36% of the leading order (LO)

and next-to-leading order (NLO) terms, raising doubts about the convergence of QCD perturbation

series at this energy scale. As for the long distance part of ∆MK , so far there is no result with

controlled uncertainty available since it is highly non-perturbative. However, an estimation given

by Donoghue et al. [3] suggest that there can be sizable long distance contributions.

Lattice QCD provides a first principle method to compute non-perturbative QCD effects in

electroweak process. We have proposed a lattice method to compute ∆MK [4, 5]. Preliminary

numerical work [6] have been done for ∆MK on a 2+1 flavor 163 × 32 DWF ensemble with a 421

MeV pion mass. We obtained a mass difference ∆MK which ranges from 6.58(30)× 10−12 MeV

to 11.89(81)×10−12 MeV for kaon masses varying from 563 MeV to 839 MeV. The preliminary

work only included parts of the diagrams, which means it was a non-unitary calculation. In this

proceeding, we will report on a full calculation with a lighter pion mass including the effects of

disconnected diagrams.

2. Evaluation of ∆MK

We will briefly summarize the lattice method for evaluating ∆MK here. More details can be

found in [6]. The essential step is to perform a second-order integration of the product of two

first-order weak Hamiltonians in a given space-time volume.

A =
1

2

tb

∑
t2=ta

tb

∑
t1=ta

〈0|T
{

K0(t f )HW (t2)HW (t1)K0(ti)
}

|0〉. (2.1)

This integrated correlator is represented schematically in Fig. 1. After inserting a sum over inter-

mediate states and summing explicitly over t2 and t1 in the interval [ta, tb] one obtains :

A = N2
Ke−MK(t f−ti)∑

n

〈K0|HW |n〉〈n|HW |K0〉
MK −En

(

−T − 1

MK −En

+
e(MK−En)T

MK −En

)

. (2.2)

Here T = tb − ta +1 is the the interaction range. The coefficient of the term which is proportional

to T in Eq. (2.2) gives us ∆MK up to some renormalization factors :

∆MK = 2∑
n

〈K0|HW |n〉〈n|HW |K0〉
MK −En

(2.3)

The exponential terms coming from states |n〉 with En > MK in Eq. (2.2) are exponentially decreas-

ing as T increases. These terms are negligible for sufficiently large T . There will be exponentially
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increasing terms coming from π0 and vacuum intermediate states. We evaluate the matrix element

〈π0|HW |K0〉 and subtract the π0 exponentially increasing term explicitly from Eq. (2.2). For the

vacuum state, we add a pseudo-scalar density term to the weak Hamiltonian to eliminate the ma-

trix element 〈0|HW + css̄γ5d|K0〉. Since the pseudo-scalar density can be written as the divergence

of the axial current, the final mass difference will not be changed by adding this term. After the

subtraction of exponentially increasing terms, a linear fit at sufficiently large T will give us ∆MK .

d

d

s

s

u

u

HW HW

t1 t2
K0†(ti) K

0
(tf)

ta tb

Figure 1: One type of diagram contributing to integrated correlator A . Here t2 and t1 are integrated over

the time interval [ta, tb], represented by the shaded region.

The ∆S = 1 effective Hamiltonian in this calculation is

HW =
GF√

2
∑

q,q′=u,c

VqdV ∗
q′s(C1Q

qq′

1 +C2Q
qq′

2 ) (2.4)

where Vqd and Vq′s are Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, C1 and C2 are Wil-

son coefficients for the current-current operators, which are defined as:

Q
qq′
1 = (s̄idi)L(q̄ jq

′
j)L

Q
qq′
2 = (s̄id j)L(q̄ jq

′
i)L ,

(2.5)

The Wilson coefficients are calculated in the MS scheme using NLO perpetuation theory [7]. Then

the MS operators and the lattice operators are connected by using a a Rome-Southampton style

style non-perturbative renormalization method [8]. Inserting the weak Hamiltonian into the four

point correlators, there will be four type of diagrams as shown in Fig. 2. In our previous work [6],

we include only the first two types of diagrams. All the diagrams are included in this work. The

type four diagrams, which are disconnected, are expected to be the main source of statistical noise.

3. Details of simulation

This calculation if performed on a lattice ensemble generated with the Iwasaki gauge action

and 2+1 flavors of domain wall fermion. The space time volume is 243 ×64 and the inverse lattice

spacing a−1 = 1.729(28) GeV. The fifth-dimensional extent is Ls = 16 and the residual mass is

mres = 0.00308(4) in lattice units. The sea light quark and strange quark masses are ml = 0.005

and ms = 0.04, corresponding to a pion mass Mπ = 330 MeV and a kaon mass MK = 575 MeV. A

valence charm quark with mass mMS
c (2 GeV) = 949 MeV is used to implement GIM cancellation.

We use 800 configurations, each separated by 10 time units.

We will use Fig. 1 to explain the set up of this calculation. We use Coulomb gauge fixed

wall sources for the kaons. The two kaons are separated by 31 in lattice unites. The two weak
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s
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Figure 2: Four type of diagrams contributing the mass difference calculation. The shaded circles represent

∆S = 1 four quark operators. The black dots are γ5 insertions for kaon sources.

Hamiltonians are at least 6 time slices away from the kaon sources so that the states produced by the

kaon interpolating operators are projected onto kaon states. For type 1 and type 2 diagrams, we use

the same strategy as in [6]. We compute a point source propagator on each time slice to calculate the

quark lines connecting the two weak Hamiltonians. For type 3 and type 4 diagrams, we calculate

random wall source propagators to evaluate the quark loops. In order to reduce the noise coming

from random numbers, we use 6 sets of random number on each time slice. All the diagrams are

averaged over all time translations to increase statistics. For the light quark propagators, which

arevthe most expensive part of this calculation, we calculate the lowest 300 eigenvectors of the

Dirac operator and use low mode deflation to accelerate the light quark inverters.

4. Fitting results

The results for the integrated correlators are given in Fig. 3(a). The three curves correspond to

three different operator combinations: Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2, respectively. The numbers are

bare lattice results without any Wilson coefficients or renormalization factors. All the exponential

increasing terms have been removed from the correlators. So we expect a linear behavior for large

enough T . When T becomes too large, the errors blow up. This is within our expectation since

disconnected diagrams have exponentially decreasing signal to noise ratio. The straight lines are

the linear fitting results from the data points in the range [7,20]. The χ2/d.o. f values given in the

figure suggest that these fits are robust.

Another method to check the quality of these fits is the effective slope plot, which is an analogy

of the effective mass plot. The effective slope at a given time T is calculated using a correlated fit

with three data points at T −1, T and T +1. In Fig. 3(b) we give the effective slope plots for three

different operator combinations. The final fitting results and the errors are also given there. For

operator combinations Q1 ·Q1 and Q2 ·Q2, we get good plateaus starting from T = 7. The result for

Q1 ·Q2 is not so satisfying due to large error. However, as we will see later, the Q1 ·Q2 contribution

to ∆MK is very small due to its small lattice amplitudes and its small Wilson coefficients.

We have also tried different fittings to make sure that our results are not sensitive to the pa-

rameters we chose. There are two parameters we try to vary: the lower end Tmin of the time range

4
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Figure 3: The left plot gives the integrated correlators for the three operator products Q1 ·Q1, Q1 ·Q2 and

Q2 ·Q2. The three lines give the linear fits to the data in the time interval [7,20]. The right plot gives the

effective slope plots for three operator products.

of the linear fit and the minimal separation between kaon sources and weak Hamiltonians ∆min. We

first fix ∆K = 6 and vary Tmin from 7 to 9. The result are given in Table. 1. All the masses are in

units of 10−12 MeV. While the central value of the fitting results are quite stable, the errors are very

sensitive to the choice of Tmin, which is a feature of disconnected diagrams. In Table. 2, we give the

results with fixing Tmin = 7 and ∆MK from 6 to 8. Both the central values and the errors are very

stable, suggesting that a separation of 6 is large enough to suppress the excited kaon states.

Table 1: The fitting results for the mass difference for difference choice of Tmin while fixing ∆K = 6. All the

masses here are in units of 10−12 MeV.

∆K Tmin Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

6

7 0.754(42) -0.16(15) 2.70(18) 3.30(34)

8 0.755(45) -0.10(17) 2.83(23) 3.49(40)

9 0.758(53) -0.16(22) 2.69(33) 3.28(55)

Table 2: The fitting results of mass difference for difference choice of ∆K while fixing Tmin = 7. All the

masses here are in units of 10−12 MeV.

Tmin ∆K Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

7

6 0.754(42) -0.16(15) 2.70(18) 3.30(34)

7 0.755(42) -0.18(15) 2.66(18) 3.23(34)

8 0.751(42) -0.18(15) 2.62(19) 3.18(35)

In our previous work, only the first two types of diagrams are included in the calculation. Now

that we have the data for all the diagrams, it is interesting to investigate the contribution from type

3 and type 4 diagrams. In Fig. 4, we give the integrated correlators and effective slopes from the

combination of type 1 and type 2 diagrams. The results shown in Fig. 5 are from the combination

of type 1, 2 and 3 diagrams. In Table. 3, we give the fitting results from difference combination of

diagrams. Comparing these results, we can conclude that the contribution from type 3 diagrams is

5
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small and there is a large cancellation between type 4 (disconnected) diagrams and other types of

digrams.
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Figure 4: Results from the combination of type 1 and 2 diagrams. The left plot gives the integrated correla-

tors and the fitting lines. The right plot shows the effective slope.

2 4 6 8 10 12 14 16
−5

−4

−3

−2

−1

0

1

2
x 10

−3

T

In
te

gr
at

ed
 C

or
re

la
to

r

 

 

Q
1
⋅ Q

1
, χ2/d.o.f= 0.54(0.86)

Q
1
⋅ Q

2
, χ2/d.o.f= 1.31(1.33)

Q
2
⋅ Q

2
, χ2/d.o.f= 0.73(0.98)

(a) Integrated correlator

0 2 4 6 8 10 12 14 16
−4

−3

−2

−1

0

1

2
x 10

−4

T

E
ffe

ct
iv

e 
sl

op
e

 

 
Q

1
⋅ Q

1

Q
1
⋅ Q

2

Q
2
⋅ Q

2

(b) Effective slope

Figure 5: Results from the combination of type 1, 2 and 3 diagrams. The left plot gives the integrated

correlators and the fitting lines. The right plot gives the effective slope plots.

Table 3: Comparison of the mass differences from different combinations of diagrams. All the numbers

here are in units of 10−12 MeV.

Diagrams Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

Type 1,2 1.485(8) 1.567(38) 3.678(56) 6.730(96)

Type 1,2,3 1.481(14) 1.598(61) 3.986(90) 7.07(15)

All 0.754(42) -0.16(15) 2.70(18) 3.30(34)

5. Conclusions and outlook

We have done a first full lattice calculation of ∆MK with a 330 MeV pion mass, a 575 MeV
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kaon mass and a 949 MeV quenched charm quark mass. Our results is:

∆MK = 3.30(34)×10−12 MeV (5.1)

Only the statistical error is included here. Our result agrees very well with the experimental value

3.483(6)×10−12 MeV. However, since we are not using physical kinematics, this nice agreement

maybe fortuitous.

To perform a full calculation with physical kinematics, two difficulties must be overcome.

First, we need to perform the calculation on a dynamical four flavor lattice ensemble with a smaller

lattice spacing. Thus Thus the effects of charm quenching and the discretization errors coming

from the large charm quark mass can be brought under control.. A more challenging problem is

the finite volume corrections related with two pions states. This problem will become important

if two pion mass is lower than kaon mass. In that case, ∆MK in continuum limit is given by the

principal part of the integral over the two pion momenta, which is quite different from a finite

volume sum. A generalization of the Lellouch-Luscher method has been proposed to correct this

potentially large finite volume effect [4]. G-parity boundary conditions are required to implement

this method [9]. In summary, a full calculation of ∆MK should be accessible to lattice QCD with

controlled systematic errors within a few years.

The author thank very much all his colleagues in the RBC and UKQCD collaborations for

valuable discussions and suggestions. Especially thanks to Prof. Norman Christ for detailed in-

structions and discussions.
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