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The RBC and UKQCD collaborations have recently proposed a procedure for computing the
KL−KS mass difference [1]. A necessary ingredient of this procedure is the calculation of the
(non-exponential) finite-volume corrections relating the results obtained on a finite lattice to the
physical values. This requires a significant extension of the techniques which were used to ob-
tain the Lellouch-Lüscher factor, which contains the finite-volume corrections in the evaluation of
K→ ππ decay amplitudes. We review the status of our study of this issue and, although a com-
plete proof is still being developed, suggest the form of these corrections for general volumes and
a strategy for taking the infinite-volume limit. The general result reduces to known corrections
in the special case when the volume is tuned so that there is a two-pion state degenerate with the
kaon [2].
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Finite-volume effects in ∆mK C.T.Sachrajda
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Figure 1: Schematic diagram of the correlation function from which ∆mK is evaluated. The K0 is created at
ti and the final-state K̄0 is annihilated at t f . The times of the two insertions of the weak Hamiltonian are t1,2
which are integrated from tA to tB. The two-pion intermediate state propagating between t1 and t2 is drawn
for illustration; the calculation includes a sum over all possible intermediate states.

1. Introduction

In the previous two talks by N.H.Christ [3] and J.Yu [4], we have heard about the RBC-
UKQCD programme to evaluate the long-distance contributions to ∆mK ≡ mKL −mKS , where mKL ,
mKS are the masses of the corresponding neutral K-mesons. This builds on the exploratory work
reported in [1]. To evaluate ∆mK we need to compute the amplitude

A =
1
2

∫
∞

−∞

dt1 dt2 T 〈 K̄ 0 |HW (t2)HW (t1) |K0〉 (1.1)

and extract the KL-KS mass difference given by:

∆mK ≡ mKL−mKS =
1

2mK
2P ∑

α

〈K̄0 |HW |α〉〈α |HW |K0〉
mK−Eα

= 3.483(6)×10−12 MeV , (1.2)

where the sum over |α〉 includes an energy-momentum integral and the numerical value is the
physical result.

In the lattice calculation we compute the four-point correlation function sketched in Fig. 1.
Defining T = tB− tA+1 (in lattice units) and integrating the times of the two insertions of the weak
Hamiltonian from tA to tB we find

C4(tA, tB; ti, t f ) = |ZK |2e−mK(t f−ti)∑
n

〈K̄0 |HW |n〉〈n |HW |K0〉
(mK−En)2

{
e(mK−En)T − (mK−En)T −1

}
,

(1.3)
where the sum is over all allowed intermediate states and ZK is the matrix element of the interpo-
lating operator used to create the K0 and annihilate the K̄0 between the kaon and the vacuum.

The method proposed in [1] is to identify the coefficient of T from which we obtain:

∆mFV
K ≡ 2∑

n

〈K̄0 |HW |n〉〈n |HW |K0〉
(mK−En)

. (1.4)

The two-pion energy levels depend on the volume of the lattice. If the volume is tuned so that there
is a state, |n0〉 say, whose energy is equal to mK , En0 = mK , then from the coefficient of T we obtain
instead

2 ∑
n6=n0

〈 K̄ |HW |n〉〈n |HW |K〉
(mK−En)

, (1.5)
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Finite-volume effects in ∆mK C.T.Sachrajda

(the state |n0〉 appears in the coefficient of T 2 and higher powers). The subject of this talk is the
evaluation of FV effects necessary to relate the sums in ∆mFV

K to the corresponding integrals in
Eq.(1.2). This is necessary in order to obtain the physical mass difference from a realistic lattice
calculation.

It will be important for the following to note that the correlation function C4 itself does not
have a pole as the volume is varied so that one of the two-pion energy levels approaches mK (see
Eq. (1.3)). This is not the case however, when one extracts the coefficient of T to obtain ∆mFV

K (see
Eq. (1.4)).

The discussion here exploits the fact that only two-pion states lies below mK (contributions
from three-pion states are neglected) and assumes the dominance of s-wave rescattering of the two
pions. To simplify the discussion we consider only the dominant I = 0 contribution; generalising
the discussion to include also the I = 2 channel is straightforward. The relation between the finite-
volume sums and infinite-volume integrals for the case in which the volume has been tuned so that
there is a state |n0〉 with En0 = mK was presented by N. Christ at the 2010 Lattice conference [2].
Using degenerate perturbation theory he found

∆MK = 2 ∑
n6=n0

〈 K̄ |HW |n〉〈n |HW |K〉
(MK−En)

+
1(
∂h
∂E

)[1
2

(
∂ 2h
∂E2

)
|〈n0 |HW |KS 〉|2

− ∂

∂En0

{
∂h
∂E

∣∣∣∣
E=En0

|〈n0 |HW |KS 〉|2
}

En0=MK

]
, (1.6)

where h(E,L) ≡ φ(q)+ δ (k), φ is a kinematic function defined in [5] and δ is the I = 0, s-wave
phase shift. The Lüscher quantization condition for two-pion states (for s-wave dominance) is

h(E,L) = nπ with E2 = 4(m2 + k2) and q = kL/2π . (1.7)

The derivation of Eq. (1.6) extends the Lellouch-Lüscher method for the derivation of the finite-
volume effects in K→ ππ decay amplitudes to next order in degenerate perturbation theory.

The key new result of this study is given in Eq. (4.4) which suggests a natural strategy for
taking the infinite-volume limit. Before presenting this result, we recall some of the salient features
of finite-volume effects in the propagation and rescattering of two pions (Sec. 2) and also present a
one-dimensional toy example with similar properties to ∆mK (Sec. 3). The derivation of Eq. (4.4) is
sketched in Sec. 4 where it is also seen that Eq. (1.6) is a special case. It should be noted however,
that we are still developing a complete proof of Eq. (4.4) and so at this stage it should be considered
a well-motivated hypothesis, but given its significance for the evaluation of ∆mK we present it here.

2. Finite-volume effects for two-pion states

Before proceeding to the discussion of finite-volume effects in the evaluation of ∆mK it is
instructive to recall the derivation of the Lellouch-Lüscher formula [6] using the method of [7].
Consider the correlation function

C(t) =
∫

V
d3x 〈0 |J(~x, t)J(0) |0〉=V ∑

n
|〈0 |J(0) |ππ,n〉V |2 e−Ent , (2.1)
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Figure 2: Left - weak vertex which creates two pions from the vacuum. Right - strong vertex leading to the
rescattering of two pions.
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Figure 3: Perturbative contributions to the correlation function.

where the suffix V denotes finite-volume matrix elements. As V → ∞, the excitation level at fixed
physics becomes large, i.e. h(E,L)→ ∞ and the Poisson summation formula implies that

∑
n

f (En) =
∫

dE ρV (E) f (E)+∑
l 6=0

∫
dE ρV (E) f (E)ei2π l h(E,L) , (2.2)

where

ρV (E) =
dn
dE

=
qφ ′(q)+ kδ ′(k)

4πk2 E , (2.3)

Applying this formula to C(t) we obtain:

C(t)→V
∫

dE ρV (E) |〈0 |J(0) |ππ,E 〉V |2 e−Et + exponentially small corrections. (2.4)

On the other hand, clustering implies that the finite-volume correlation function is equal to the
infinite-volume one up to exponentially small corrections so that

C(t) =
π

2(2π)3

∫ dE
E

e−Et |〈0 |J(0) |ππ,E 〉|2 k(E) , (2.5)

where k(E) =
√

E2/4−m2. Comparing the expressions in Eqs.(2.4) and (2.5), we obtain

|ππ,E〉= 4π

√
V EρV (E)

k(E)
|ππ,E〉V . (2.6)

This is the key ingredient of the Lellouch-Lüscher formula, (note also the relation between the
normalisations of single-particle states in infinite and finite volumes:
|K(~p = 0) =

√
2mKV |K(~p = 0)〉V ).
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2.1 Perturbation theory for two-pion states

Note that although C(t) has no non-exponential FV corrections, the energies and matrix el-
ements do. It is instructive to see how this works in perturbation theory. A full calculation for
K→ ππ decays in chiral perturbation theory was presented in [8]; here we simplify the calculation
while keeping the relevant points. For this illustration consider a weak vertex which can create
a two-pion state from the vacuum and a strong-interaction vertex which allows the two pions to
rescatter (see Fig. 2).

Evaluating the diagrams in Fig. 3, the correlation function at zero three-momentum is found to
be of the form

C(t) =
1
V ∑

~k

1
(2ωk)2 e−2ωkt +

λ̂

V 2 ∑
~k,~l

1
(2ωk)2(2ωl)2

1
2(ωl−ωk)

{
e−2ωkt − e−2ωlt

}
(2.7)

where ω2
k = ~k2+m2

π (ω2
l =~l2+m2

π ) and λ̂ is proportional to the strong coupling. The starting point
for the approach of [7] is that there are no power-like finite-volume corrections in the correlation
function and this is manifested by the fact that there is no singularity at ωk = ωl in the summand
of the second term on the right-hand side of Eq. (2.7). This does not contradict the fact that, as we
know from the pioneering work of Lüscher [5], there are finite-volume corrections to the two-pion
energies and, as we know from the Lellouch-Lüscher formula [6], also to the matrix elements. To
see this we combine the terms with |~l |= |~k | in the second term on the right-hand side of (2.7) with
the lowest-order contribution to obtain:

1
V ∑

~k

1
(2ωk)2 e−2ωkt +

λ̂

V 2 ∑
~k

νkt
(2ωk)4 '

1
V ∑

~k

1
(2ωk)2 e−(2ωk+∆E(k)) t , (2.8)

where ∆E(k) is the finite-volume energy shift as given by Lüscher’s formula. The terms with
|~l | 6= |~k | correctly give the Lellouch-Lüscher formula [8]. Sum of the (power-like) finite-volume
corrections to the energy and matrix elements cancel as seen in Eq.(2.7).

The O(λ̂ ) term highlighted in Eq. (2.7) comes from the integral of the time tS at which the
strong-vertex in inserted from 0 to t corresponding to the propagation and rescattering of two pions
which are responsible for the power-like finite-volume effects in the energies and matrix elements.
The full contribution to the correlation function requires the integral over the complete range of tS,
the remaining terms do not contain non-exponential finite-volume effects (as demonstrated in [8]).

3. Towards understanding the finite-volume corrections to ∆mK: Some
one-dimensional toy examples

An instructive example, with some similar features to the situation encountered in the evalua-
tion of ∆mK is provided by the one-dimensional formula [9] 1:

1
L ∑

n

f (p2
n)

k2− p2
n
= P

∫
∞

−∞

d p
2π

f (p2)

k2− p2 +
f (k2) cot(kL/2)

2k
. (3.1)

1In Eq. (21) of [9] there is a factor of 1/2 missing in the second term on the right-hand side of Eq. (3.1).

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
3
9
9

Finite-volume effects in ∆mK C.T.Sachrajda

The sum on the left-hand side of Eq. (3.1) is over the integers n, with pn = 2πn/L, L is the length of
the one-dimensional space and k is an external momentum. k can be considered as being analogous
to the relative momentum of each pion in a K→ ππ decay (m2

K = 4(m2
π +k2)). The presence of the

pole in the summand on the left-hand side, leads to non-exponential corrections to the difference of
the finite-volume sum and infinite-volume integral; these corrections are given by the second term
on the right-hand side.

In order to minimise the finite-volume corrections, a sensible strategy would be to tune the
volume L such that the cot(kL/2) = 0, i.e. kL = (2n+1)π where n is an integer (not to be confused
with the summation variable). The infinite-volume limit would then be taken (in principle at least),
by increasing L while satisfying cot(kL/2) = 0, and for each volume only exponentially small
finite-volume corrections would be encountered.

An alternative strategy might be to increase the volumes in such a way that at each step k
corresponds to one of the allowed momenta, k = pn0 say for some integer n0 (which increases as
the volume is increased). In that case we remove the terms n =±n0 from the sum and find

1
L ∑

n

′ f (p2
n)

k2− p2
n
= P

∫
∞

−∞

d p
2π

f (p2)

k2− p2 +
2 f ′(k2)

L
− f (k2)

2Lk2 , (3.2)

where f ′(k2) indicates the derivative of f w.r.t. k2. The ′ on the sum indicates that the terms with
n = ±n0 have been removed. From the right-hand side of Eq. (3.2) we see explicitly that in this
one-dimensional example the power-like finite-volume corrections are O(1/L).

4. Finite-volume effects in ∆mK

Finally we return to ∆mK and Eq. (1.3). As already noted, the correlation function C4 has
no pole as one of the energies En→ mK , and hence no non-exponential finite-volume corrections.
However, the proposal in Ref. [1] is to use the T -behaviour of C4 to extract ∆mFV

K given in Eq. (1.4).
This does have a pole as En→ mK and hence non-exponential finite-volume corrections. It is now
convenient to make the replacement

1
mK−En

→ mK +En

4(k2− p2
n)

where m2
K ≡ 4(k2 +m2

π) and E2
n ≡ 4(p2

n +m2
π) . (4.1)

We need to generalise the derivation of Eq. (3.1), which starts with the relation [10]

1
L ∑

n

f (p2
n)− f (k2)

k2− p2
n

=
∫

∞

−∞

d p
2π

f (p2)− f (k2)

k2− p2 , (4.2)

where the summand is constructed not to have any poles. Taking

f (En) = 2V 〈K̄0 |HW |n〉V V 〈n |HW |K0〉V (4.3)

and recalling that the quantisation condition is h(En,L) = nπ , we obtain

∑
n

f (En)

mK−En
= P

∫
dE ρV (E)

f (E)
mK−E

+ f (mK)

(
cot(h)

dh
dE

)
mK

. (4.4)
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The non-exponential finite-volume corrections are contained in the second term on the right-hand
side.

Given the result in Eq. (4.4), what is the best strategy for taking the infinite-volume limit? It
appears to be attractive to tune the volumes at each step keeping cot(h(mK ,L)) = 0, so that only
exponentially small corrections appear. Of course, in practice the tuning will not be perfect and the
cotangent term in Eq. (4.4) allows us to correct for any small mistuning.

From Eq. (4.4), we can readily obtain the result presented by N.Christ at Lattice 2010 [2]. If
we take the infinite-volume limit such that one of the allowed energy levels, n0 say, is degenerate
with the kaon, mK = En0 , then Eq. (4.4) implies that

∑
n

′ f (En)

mK−En
= P

∫
dE ρV (E)

f (E)
mK−E

+ f ′(mK)+
1
2

f (mK)
h′′

h′
. (4.5)

5. Summary and Conclusions

Progress towards the evaluation of the KL – KS mass difference [1, 4] is one of the examples of
the RBC-UKQCD collaboration’s programme of extending the range of physical quantities which
can be evaluated in lattice simulations. In order to obtain the physical result from ∆mFV

K in Eq. (1.4),
determined from the T -behaviour of the correlation function, we need to correct for the finite-
volume effects which are exhibited in Eqs. (4.4) and (4.5).

In this talk we have sketched the derivation of the powerful result in Eq. (4.4). We are currently
working towards a complete proof that threshold effects in f (En) defined in Eq. (4.3) do not lead
to power corrections in the volume. An important consistency check is that Eq. (4.4) reproduces
correctly Eq.(4.5).

Acknowledgements: NHC acknowledges partial support from the US DOE grant DE-FG02-
92ER40699 and CTS from STFC grant ST/G000557/1.
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