PROCEEDINGS

OF SCIENCE

Implementation of the twisted mass fermion
operator in the QUDA library

Alexei Strelchenko*
Scientific Computing Division, Fermilab, Batavia, IL 60510-5011, USA
E-mail: astrel@fnal.gov

Constantia Alexandrou

Department of Physics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus, and
Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi Str.,
Nicosia 2121, Cyprus

E-mail: alexand@ucy.ac.cy

Giannis Koutsou

Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi Str.,
Nicosia 2121, Cyprus

E-mail: g.koutsoulcyi.ac.cy

Alejandro Vaquero Avilés-Casco

Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi Str.,
Nicosia 2121, Cyprus
E-mail: a.vaquerol@cyi.ac.cy

We discuss an extension of the QUDA library for the Wilson twisted mass operator. A perfor-
mance analysis is presented for both degenerate and non-degenerate flavor doublets. The degen-
erate twisted mass fermion operator runs at up to 190, 487 and 856 Gflops, for double, single and
half precisions respectively on recent NVIDIA Kepler GPUs, while our implementation for the
non-degenerate flavor doublet allows to reach 163, 516 and 879 GFlops, respectively. The code
is currently in production for the hadron structure study.

31st International Symposium on Lattice Field Theory LATTICE 2013
July 29 — August 3, 2013
Mainz, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:astrel@fnal.gov
mailto:alexand@ucy.ac.cy
mailto:g.koutsou@cyi.ac.cy
mailto:a.vaquero@cyi.ac.cy

Implementation of the twisted mass fermion operator in the QUDA library Alexei Strelchenko

1. Introduction

High performance computing heterogeneous architectures, based either on GPUs or recently
released Intel’s MIC co-processors, provide a practical solution to accelerate time consuming lattice
QCD (LQCD) tasks [1], [2]. One example of such a task is the evaluation of disconnected diagrams,
or fermion vacuum loops, that have typically been omitted from LQCD calculations due to their
large computational cost. The systematic uncertainties introduced by this omission remains an
open issue.

Since accelerators are becoming all the more readily available components of contemporary
and future HPC systems, it is essential to develop multi-platform tools to enable LQCD computa-
tions to be performed with high efficiency across a variety of architectures. The USQCD SciDAC
software suit can be considered as a good example of this approach. In particular, this software is
made up of software library modules targeting different types of commodity clusters (and custom
facilities) that can be re-used by high-level application packages such as Chroma, CPS or MILC.

In this report we will focus on the twisted mass operator for GPUs, implemented in the QUDA
library, a community code based on the CUDA platform for carrying out the time-consuming com-
ponents of LQCD computations on NVIDIA GPUs [3], [4]. There are a number of software pack-
ages designed for simulating twisted mass LQCD, most notable of which is tmLQCD, originally
developed for x86 microarchitectures (though it currently contains a CUDA port as well) [5]. An
OpenCL implementation is reported in Ref. [6].

2. QUDA programming for twisted mass fermions

The QUDA library is a GPU code which implements a number of fermion operators (and other
helper kernels) and a host interface, in an Object-Oriented Programming paradigm. In particular,
each type of Dirac operators as well as host and device spinor fields are encapsulated into separate
classes with all the necessary functionality for any third party client code such as, e.g. Chroma,
MILC etc. In this section we provide some implementation aspects of the twisted mass code devel-
opment in QUDA. In the most general case of the mass non-degenerate flavor doublet, the Wilson
twisted mass fermion operator formulation reads [7]:

Dry = Dy +ifiyst + &1, (2.1)

where Iy, stands for the Wilson term, 7' denotes the ith SU(2) Pauli matrix and fi and & are the
(bare) twisted mass parameters. For internal computations QUDA adopts a non-relativistic basis for
the spinor projections; this allows to reduce memory traffic while computing hopping terms in time
direction. However, the library provides converting routines that can be utilized to transform from
a chiral basis into the QUDA internal format: this option is controllable via QudaInvertParam
interface structure described briefly in Subsection 2.2.

2.1 Implementation details

For the QUDA twisted mass iterative solvers one can employ two types of (even-odd) precon-
ditioning: symmetric and asymmetric. For instance, one may deal with the following equivalent



Implementation of the twisted mass fermion operator in the QUDA library Alexei Strelchenko

(Ceven-even’) preconditioned systems (cf. Appendix B in Ref. [5]):
(Rf?e - szeoR(;ol oe) Ve = be — ¢60R;ol bo; (2.2)

(Ié’e - KZR;’ImeoRgol oe) We = Rgel (be - meoRgol bf)); (23)

where R represents a local twisting operator and the odd component of the solution is reconstructed
by the expression:

Vo =R, (bo — B,oR. V). (2.4)

Accordingly, we implemented a number of *fused” CUDA kernels, such as R, 'B,,, (R.. — K*1B,,)
(and their ’daggered’ analogues), required for the left-hand-side (LHS) of Eq. (2.2). As a result, all
local operators are merged into dslash kernels and computed on the fly reducing expansive accesses
to the GPU global buffer. All these kernels are generated by a python script in the same way as it
is done for other fermion operators available in QUDA.

Next, the main peculiarity of the non-degenerate twisted mass fermion operator consists of the
presence of off-diagonal matrix elements in flavor subspace, introduced by the third term in the
right-hand-side (RHS) of Expr. (2.1). That is, in this case, one has to apply the dslash on both
flavors resulting in more complicated compute kernels and the most straightforward approach here
is to re-use the gauge field to avoid an extra memory transaction while computing contributions
from each spinor flavor.

Finally, to include the twisted mass dslash operator in the whole framework, we added two new
classes, DiracTwistedMass and DiracTwistedMassPC, which encapsulate all necessary
attributes and methods for both degenerate and non-degenerate flavor doublets, including methods
for launching dslash kernels on the accelerators. The multi-GPU parallelization for the degenerate
flavor doublet is almost identical to the corresponding Wilson implementation. On the contrary,
for the non-degenerate case, since matrix-vector operations involve two fermion flavors, we had
to redesign QUDA packing routines to properly take into account the fifth flavor dimension when
gathering boundary-spinor sites in non-temporal lattice directions.

More detailed information about optimization strategies exploited in the QUDA library can be
found in Refs. [3, 4, 8].

2.2 End-user configuration and setup guide

To compile the twisted mass component in the QUDA library one needs to provide the package
configure script with a new option, i.e,

—enable-[ndeg-]twisted-mass—-dirac.

The end-user application setup is pretty similar to the Wilson case. Namely, one should specify
the following key information to QUDA by means of QudaInvertParam structure attributes
declared in quda . h header file of the library:

— dslash type (dslash_type attribute). For the twisted mass operator one can currently choose
between QUDA_TWISTED_MASS_DIRAC or QUDA_NDEG_TWISTED_MASS_DIRAC for the degener-
ate or non-degenerate flavor doublets, respectively.

— flavor degeneracy (twist_flavor attribute). Available options are: QUDA_TWIST_PLUS,



Implementation of the twisted mass fermion operator in the QUDA library Alexei Strelchenko

QUDA_TWIST_MINUS or QUDA_TWIST_NDEG_DOUBLET.
— the twisted mass parameters U, €. Note that € is set to zero by default for the degenerate case.
To setup the QUDA solvers, a client application should also specify solver_type and
solution_type attributes of the interface. The former one indicates whether to solve the orig-
inal (Ax = b) or normal (A"Ax = A'b) linear system, i.e., QUDA_DIRECT [NORMOP]_SOLVE, and
whether the solver has to take care of preconditioning, e.g., QUDA_DIRECT_PC_SOLVE etc. In
addition to this information, the latter attribute defines whether the (e.g., unpreconditioned) sys-
tem to be solved has the form Ax = b for DIRECT option or A'Ax = ATh for NORMOP option
(QUDA_MAT_SOLUTION), or has the form Aer = b, Ax =y for DIRECT option or ATAx = b for
NORMOP option (QUDA_MATDAG_MAT_SOLUTION, respectively).
A complete example of the QUDA interface setup and solvers usage can be found under the
tests directory of the package.

3. Performance analysis

The twisted mass code was tested on NVIDIA Kepler GPUs based on the recent GK110
micro-architecture. We will analyze both single and multi-GPU performance. The single GPU
benchmarks were preformed on a GTX Titan card that is similar to the Tesla K20X accelerator. For
the multi-GPU tests we made use of the K20 cluster at Jefferson Lab. (ECC was enabled on the
JLab K20 cluster and disabled on the GTX Titan).

We start our analysis with single GPU performance for the (asymmetrically preconditioned)
dslash operator, which corresponds to the operator entering the LHS of Eq. (2.2). Here we included
the plain Wilson case as a reference point. The lattice size for the single-GPU runs was 323 x 64 and
we examined two types of gauge field reconstructions, namely 8- and 12-parameter reconstructions.
QUDA allows for storing the gauge-field links in less than the 9 complex numbers needed to store
a full SU(3) matrix. In one case, it allows omitting one row of the three, reducing the storage
requirements to 6 complex numbers, so-called 12-parameter reconstruction. With 8-parameter
reconstruction, the link is decomposed into a linear combination of the eight SU(3) generators and
only the coefficients are stored (8 real numbers). In both cases the full SU(3) is recomputed on the
fly during the Dirac operator application. This reduces both the memory requirements but more
importantly the bandwidth requirements of applying the Dirac matrix. In addition, to benefit from
full-clock speed for the double precision Arithmetic Logic Units on the gaming card we set

nvidia-setting —a [gpu:0]/GPUDoublePrecisionBoostImmediate=1.

We summarize our results in Table 1.

Let us make a few remarks about the obtained results. First, one can observe a consistent
degradation in double precision performance for all three fermion operators for the 8-parameter
reconstruction, which is due to transcendental operations required for this type of reconstruction.
Second, in the non-degenerate case, there is a performance penalty in half precision dslash for the
8-reconstruction, which is attributed to the register spilling. Taking these observations into account,
in the following multi-GPU tests we will consider the 8-parameter reconstruction for the degenerate
twisted mass solver and 12-parameter reconstruction for the non-degenerate one.



Implementation of the twisted mass fermion operator in the QUDA library

Alexei Strelchenko

Figure 1: Strong scaling of the Conjugate Gradient algorithm for inverting the flavor-degenerate Twisted
Mass fermion operator, using 8-parameter reconstruction of the gauge links. We show results for the double-
single (DS, blue circles) and double-half (DH, red circles) mixed precision CG inverter.

3500

3000

2500

2000}

GFlops

1500}

1000}

500}

JLAB K20m cluster
@ rec 8 gauge

Ngpus

12

16 17

Table 1: Single GPU performance in GFlops.

e—e DS

’ Prec. ‘ Recon. ‘ Wilson ‘ Deg. TM | Non-deg TM

double 12 184 190 163
8 179 183 115

single 12 401 415 516
8 472 487 567

half 12 732 759 879
8 829 858 624

Our next goal is to illustrate multi-GPU performance profile of the mixed precision degenerate

twisted mass CG solver that is combined with asymmetric and symmetric preconditioning. These
runs were performed for 483 x 96 lattice, with k¥ = 0.156361, u = 0.0015. Here we provide
information on the number of iterations and total solver time depending on number of GPUs and

preconditioning type used. For the double-single mixed precision (and the solver tolerance set at

107%) the results are presented in Table 2. We conclude that the asymmetrically preconditioned

CG solver outperforms the symmetrically preconditioned version and the symmetric case requires

further optimization.



Implementation of the twisted mass fermion operator in the QUDA library

Alexei Strelchenko

Table 2: Multi-GPU performance of the double-single mixed precision CG.

N GPUs | Asymm. (iter/secs) ‘ Symm. (iter/secs) ‘ Speedup

4 3130/ 126.28
6 3111/84.99
8 3169/71.93

3131/132.72
3111/89.72
3169/79.47

5%
6%
10%

Figure 2: Strong scaling of the CG algorithm for inverting the flavor non-degenerate Twisted Mass fermion
operator, using 12-parameter construction of the gauge links. The rest of the notation is the same as in Fig. 1.

4500

JLAB K20m cluster
4000} @ rec 12 gauge

3500+
3000

2500+

GFlops

2000

1500}

1000}

500

e—e DS

w
IN
ol
<)

Ngpus

Finally, we present the strong scaling results for the multi-GPU asymmetrically preconditioned

mixed precision CG solver. We consider here a 32 x 192 lattice to demonstrate the best case

code scaling. Fig. 1 corresponds to the degenerate flavor doublet where we choose 8-parameter

reconstruction for the (random) gauge field configuration. Fig. 2 presents the strong scaling for the

non-degenerate case. Here we choose 12-parameter reconstruction as it gives better performance,

as can be seen from the comparison in Table 1. The main difference in the CG performance

between degenerate and non-degenerate cases consists in the necessity to invert on both flavors

simultaneously in the latter case. As a result, the arithmetic intensity (flop-to-byte ratio) is slightly

higher for the non-degenerate flavor doublet, also due to the gauge field re-use mentioned in Section

2.



Implementation of the twisted mass fermion operator in the QUDA library Alexei Strelchenko

4. Conclusion

The QUDA library was extended to implement an extra fermion operator thus extending the
potential user base of this software package and will allow utilizing NVIDIA accelerators for a
wider set of problems, in particular, problems which are relevant to the European Twisted Mass
collaboration, one of the largest collaboration in Europe. The code is now in production and has
been used in calculations of disconnected fermion loops such as in Refs. [9, 10].

Future developments include an implementation, which combines clover-improvement with
twisted mass fermions, for the analysis of gauge configurations that have been produced at physical
pion mass [11].

5. Acknowledgements

A. S. was supported in part by the Research Promotion Foundation of Cyprus under grant
ITPOXEAKYZXH/ITPONE 0308/09, and A. V. is supported by funding received from the Cyprus
Research Promotion Foundation under contract EPYAN/0506/08. This work is partly supported
by the PRACE-1IP and PRACE-2IP (Community Codes Development - Work Package 8) projects
funded by the EUs 7th Framework Programme (FP7/2007-2013) under grant agreement no. RI-
211528 and no. RI-283493 respectively, and by the SciDAC 3 project. This talk was a part of a
coding session sponsored partially by the PRACE-2IP project, as part of the "Community Codes
Development" Work Package 8.

References

[1] G.I Egri et al., Comput. Phys. Commun. 177, 631 (2007)

[2] B. Joo et al., "Lattice QCD on Intel Xeon Phi", in: Lecture Notes in Computer Science, Vol. 7905, 44
(2013)

[31 M. A. Clark et al, Comput. Phys. Commun. 181, 1517 (2010) [arXiv:0911.3191 [hep-lat]].

[4] R. Babich er al, arXiv:1109.2935 [hep-lat].

[5] K. Jansen and C. Urbach, Comput. Phys. Commun. 180, 2717 (2009) [arXiv:0905.3331 [hep-lat]].
[6] M. Bach et al, Comput. Phys. Commun. 184, 2042 (2013) [arXiv:1209.5942 [hep-lat]].

[7] R. Frezzotti and G. C. Rossi, Nucl. Phys. Proc. Suppl. 128, 193 (2004) [hep-1at/0311008].

[8] M. Clark and R. Babich, "High-efficiency Lattice QCD computations on the Fermi architecture,” in:
Innovative Parallel Computing (InPar), (2012)

[9] C. Alexandrou et al, arXiv:1309.2256 [hep-lat].
[10] A. Abdel-Rehim et al, arXiv:1310.6339 [hep-lat].
[11] A. Abdel-Rehim ez al., PoS (LATTICE 2013) 264.



