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of these simulations. In this proceeding, we describe the optimisation of Clover fermion action
for Blue gene-Q architecture and how different iterative solvers behave for Domain Wall Fermion
action. We find that the optimised Clover term achieved a maximum efficiency of 29.1% and
20.2% for single and double precision respectively for iterative Conjugate Gradient solver. For
Domain Wall Fermion action (DWF) we found that Modified Conjugate Residual(MCR) as the
most efficient solver compared to CG and GCR. We have developed a new multi-shift MCR
algorithm that is 18.5% faster compared to multi-shift CG for the evaluation of rational functions
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This proceeding describes the optimisation of Clover fermion action for Blue gene-Q archi-
tecture and the application of different iterative solvers for Domain Wall fermion action in two
subsequent sections.

1. Clover Action for Blue Gene-Q

Clover fermion action is widely used in Lattice QCD and is written as

Sclover = SW −
CSW

4 ∑
µ<ν

ψ̄(x)σµνFµνψ(x) . (1.1)

where SW is the Wilson action. Clover action with the right coefficients (CSW ) gives O(a) improve-
ment for on-shell quantities. Performance of the inverter is important for any good optimisation of
Lattice QCD simulation. Inverting sparse fermion matrix involves using an iterative solver in which
clover operator is applied at each iteration. This section describes the porting and optimisation of
clover inverter for Blue Gene-Q architecture using the BAGEL compiler [Boyle 09].

Blue Gene-Q is build with the 64-bit Power-PC A2 processor core that has a peak performance
of 209 Tera flops per rack of 1024 nodes (each node containing 16 compute and one OS core). For
complete details of the architecture, refer to [Haring 12]. BAGEL is a QCD domain specific library
developed by University of Edinburgh [Boyle 09]. Using the BAGEL library, BAGEL Fermion
Matrix (BFM) library provides QCD specific functionality. Currently the library supports solutions
to QCD actions Wilson, Wilson twisted mass, Domain wall and Overlap. It supports iterative
solvers like Conjugate Gradient (CG), Multi-shift CG in single, double and mixed precisions.

1.1 Clover and Wilson actions

Clover action can be written in terms of Wilson action as follows

S = ∑
xy

¯φ(x)Mxyφ(y) (1.2)

MWilson
xy = I− k D

Mclover
xy = A− k D

A = I− k
Csw

2 ∑
µ<ν

[γµ ,γν ]Fµν

where D is Wilson-Dirac operator. For clover action, Wilson-Dirac operator D and clover term A
are applied independently. This clover term A is local and is computed once and then applied to all
the iterations of an iterative solver. A is hermitian as [γµ ,γν ] and Fµν are hermitian. The algebra of
γ matrices leaves A with two 6×6 hermitian matrices A1 and A2 at each site.

Axyzt =

(
A6×6

1 0
0 A6×6

2

)
(1.3)

This leaves us with implementation of A× φ to complete the clover action. In performing this
matrix multiplication, A1 and A2 are represented in a compressed format to save memory. The
diagonal elements are stored as real numbers and only the lower triangular elements are stored as
complex numbers.
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1.2 Optimisation

BAGEL already has a highly optimised version of Wilson-Dirac operator(D) [Boyle 12a]. The
clover matrix A is constructed using an external library like CHROMA or CPS and then imported
to BAGEL. This leaves us with optimising only the clover apply kernel(A×φ ).

1.2.1 SIMD Optimisation

QPX floating point unit in Blue Gene-Q has a vector length of four. To efficiently use this
unit, data required for four parallel instruction should be aligned consequently in memory. BAGEL
compiler supports aligning data for different vector lengths. The compiler constructs logical SIMD
volumes based on the vector length and stores the data from each of the logical volumes conse-
quently in memory. With this new data layout, the QPX floating point unit is efficiently used to
increase floating point throughput.

1.2.2 Memory Optimisation

To reduce the memory latency, caches and registers should be efficiently used. In applying
the clover term, all reduction operations should ideally use registers to store output variables in
order to avoid writing to L1 cache which is write through. With 32 registers available, it will be
easier to load half-spinors into register and compute the results. For the efficient implementation
of clover apply term, we use 27 registers, 6 each for χ and ψ and 15 registers for storing the clover
matrix(A).

1.2.3 Instruction pipe-lining

Io hide memory latency and increase the instruction throughput, the instructions should be
pipelined. BAGEL compiler supports constructing two pipelines using the greedy algorithm. De-
pendencies in instructions are identified and are reordered accordingly. This plan for schedule of
instructions is referred to as execution map. Execution map is a abstract assembler and this is
then translated to hardware specific assembly instructions. In the execution map, the load(store)
instructions are pipe-lined with the multiply instructions. As the instruction unit is kept busy, this
increases instruction throughput and the latency associated with loading(storing) data to memory
is hidden.

1.3 Results

The optimisations discussed in previous subsections are applied to clover apply(A) kernel. In
this section, performance will be measured as the performance of the entire iterative Conjugate
Gradient solver for clover fermion action that includes application of D and A for each iteration.
We will simply refer to it as Clover-CG. In order to achieve good efficiency, we need to experiment
with the threads, MPI processes and memory. To maximise the usage of shared memory and
reduce unnecessary MPI packets, the application should run only with one MPI process per node.
Each node supports 64 hardware threads and we can experiment with number of threads that gives
optimal performance.

Fig. 1(left) shows the performance of Clover-CG in GFlops per node, for increasing number
of threads. The performance is measured on lattice volume of 324, running on 128 nodes. From the

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
2
2

BGQ,Iterative solvers for Lattice actions Karthee Sivalingam

1
.5
7

2
.6
5 4
.4
7 7
.4
9

1
4
.9
1

2
7
.0
9

3
7
.7
6

2
.3
7

1
.9
3

3
.3
5 5
.6
6

9
.5
9

1
8
.3
9

3
2
.2
3

4
5
.1
6

2
.2
5

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128

G
FL
O
P
S/
N
O
D
E

THREADS

double

single

66.15

45.16

56.24

37.67

0

10

20

30

40

50

60

70

8 9 10 11 12 13 14 15 16 17 18

G
FL
O
P
S/
N
O
D
E

log2(Volume)

1-Node,double 128-Node,double 1-Node,single 128-Node,single

Figure 1: Plot showing Left : performance in GFlops per node for Clover-CG when increasing number of
threads are used per node. The performance is measured on lattice volume of 324, running on 128 nodes.
Right : Strong scaling (GFlops per node) of the clover solver in double and single precision for increasing
local sub-volume (for a single node) when run on a single and 128 nodes

plot we can infer that we have maximum efficiency of 18% for double precision and 23% for single
precision when 64 threads are used. The speedup, when the threads are increased is not linear. We
achieve only ≈ 37% of the expected maximum performance due to the synchronisation overheads.

An important factor in performance for most high performance application is memory and
network bandwidth. Optimally, the data should be available in cache so that memory latency
is reduced. For single precision, we achieve a maximum performance of 59.5 GFlops per node
when the lattice volume is 484. And similarly for double precision, maximum performance of 41
GFlops per node is achieved for lattice volume of 323× 48. Both the single and double precision
performance show strong local volume dependence.

Fig. 1(right) shows the strong scaling of Clover-CG in double and single precision for increas-
ing local lattice sub-volume, when run on a single and 128 nodes. The strong scaling shows strong
dependence on local volume. This is directly related to the size of the L2cache and maximum per-
formance is achieved when the data fits the L2cache. This means that to achieve good efficiency
we should run on less or more number of nodes according to the simulated lattice volume.

2. Iterative solvers for DWF

Lattice QCD simulations involve computing the Quark propagators in a background gauge
fields. Quark propagators are computed by solving

(D+mq)ψ(x) = η(x) (2.1)

where D is the Dirac matrix, mq is the quark mass, ψ(x) and η(x) are the solution and source
field respectively. Iterative methods (see eg. [Saad 03]) are the only viable way to solve large
sparse linear systems. In lattice simulation, quark propagators are computed on different gauge
configurations and for different right hand sides.

For Domain Wall fermion(DWF) action, the Dirac matrix is large, indefinite and the eigen
values are clustered around the origin. This makes the solution to the linear system difficult. Also
as the simulated quark masses(mq) gets closer to physical values and lattice spacing (a) gets smaller,
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the Dirac matrix becomes ill-conditioned. Finding a suitable solver and preconditioner are topics of
intense research. The following sections discuss iterative solvers namely Conjugate Gradient(CG),
Generalised Conjugate residual(GCR) and Modified Conjugate residual(MCR) (refer [Saad 03]
for details) for solving DWF.

2.1 CG, MCR and GCR

The iterative methods described in this subsection are Krylov subspace methods based on
projection methods(Petrov-Galerkin conditions). For solving a linear system Ax = b, the Krylov
subspace is defined by

Km(A,r0)≡ span{r0,Ar0,A2r0, . . . ,Am−1r0} (2.2)

where r0 = b−Ax0. The approximate solution xm is obtained by searching in the subspace x0 +Km

so that
b−Axm ⊥ Lm (2.3)

where Lm is also a subspace of dimension m. Conjugate Gradient (CG) is the most popular method
for solving sparse symmetric, positive definite linear systems. CG uses orthogonal projection (Lm =

Km) on to Krylov subspace Km(A,r0). For symmetric, positive definite matrices, that are hermitian,
MCR improves by constructing residual vectors that conjugate. For non-symmetric matrices, we
can generalise by constructing pi as a linear combination of current and all previous pis. This
general method is referred to as Generalised Conjugate Residual.

For CG, pis are A-orthogonal, whereas for MCR, Apis are orthogonal or simply pis are A†A-
orthogonal. CG and MCR are very similar, but MCR requires storage for one more vector and
requires more operations than CG. GCR algorithm requires us to store all previous pis (Apis) and
this is practically not possible. The number of previous pis that are stored are restricted to a lesser
number (m). We can either restart after m iterations or truncate the number of pis stored to the
latest m entries. The former is referred to as GCR(m) and the latter as OrthoMin(m).

2.2 Results

In simulating Domain Wall Fermion, the fermion matrix is represented as M†M as it is positive
definite and hermitian. In case of GCR and OrthoMin, we can consider both M†M and M, to check
if it works generally for non-symmetric matrices. Also for GCR and OrthoMin, careful study
is required to balance the number of previous residuals to store and computation cost for better
performance.

In this work, we use a variant of CG called CGNE [Freund 92], which solves Ax= b by solving
AAT y = b (x = AT y). We will refer to it as CG for simplicity. GCR with fermion matrix M†M and
M will be referred to as GCR-MM and GCR-M respectively. OrthoMin will also be referred to
as O-MIN. The results described in this section uses gauge configuration with N f = 2+1 dynamical
flavors, generated from Iwasaki gauge action at β=2.13 (a−1=1.73(4) GeV) and lattice volume of
163× 32. All the iterative solvers discussed in this section uses Ls=16 and quark mass of 0.01,
unless specified otherwise. The performance is measured on 128 nodes of Blue Gene-Q machine.

For a random gauge, GCR and OrthoMin solves M efficiently as GCR(4) and OrthoMin(4)
solves in almost half the time as that for CG and MCR. Fig. 2 (left) shows convergence of residual as
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a function of iteration count. The efficient solvers of GCR and OrthoMin are plotted for reference.
The residual reduce steeply for GCR, OrthoMin and MCR compared to CG. It is important to note
that where the former methods are based on conjugate residuals, the latter method CG is based on
gradients.

Using a QCD gauge configuration generated using Hybrid Monte-Carlo simulation is inter-
esting as it changes the spectrum of the DWF Operator. For solving M†M ψ = χ , we see similar
results as that for random gauge, but the fastest GCR solver is 40 times slower than CG. For solving
non hermitian system M ψ = χ , GCR and OrthoMin do not converge. A closer study of the DWF
operator and the impact of the fifth dimension shows that as Ls increases linearly, the conditioning
of the M worsens and convergence of GCR suffers exponentially when compared to CG.
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Figure 2: Plot showing how the residual reduces with iterations for DWF in a random gauge (left) and
background QCD gauge field (right), with Ls = 16 using different solvers in solving M†M ψ = χ .

From numerical analysis in [Nachtigal 92a, Nachtigal 92b], we can conclude that when the
eigen values of the matrix lie in all four quadrants of the complex plane, the convergence of non-
hermitian solvers(GCR with M) is unreliable. In such cases, normal equations is the best we can do.
Using M†M is therefore the only option for good convergence. The GCR and OrthoMin solvers
may perform better than the CG, if a good pre-conditioner is used as shown by the results from
random gauge. Fig. 2 (right) shows a closer look at the convergence of residual as a function of
iterations. We can easily identify MCR as the most efficient algorithm as it takes 20% lesser time
and number of iterations to solve the system.

In solving 2.1, the solution is usually repeated for different quark masses(mq). Instead of
solving them separately, the solution for different quark masses with same source field can be
computed simultaneously using multi-shift methods [Osborn 08, Bloch 09]. This is based on the
fact that the Krylov subspaces are shift invariant

Km(D,b) = Km(D+m,b) (2.4)

Multi-shift solvers are a key part in the Rational Hybrid Monte Carlo(RHMC) algorithm. This
method can be used for any of the Kyrlov subspace methods. For DWF, we have found out that
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MCR is an efficient algorithm. We developed a multi-shift MCR algorithm that uses MCR as the
solver for multiple shifts. The multiple shifts corresponds to poles in the rational approximation.
This new multi-shift algorithm accelerates the evaluation of rational function by 18.5% in RHMC
algorithm. In 2+1f Lattice simulations, the rational function evaluation takes 1/3 of the compute
time and using this method will give a overall 6% gain in RHMC.

3. Conclusions

We have successfully ported the Clover Lattice fermion action to Blue Gene/Q architecture.
The optimised Clover term achieved a maximum efficiency of 29.1% and 20.2% for single and dou-
ble precision respectively for iterative Conjugate Gradient solver. This optimised version showed
good Weak scaling. Strong scaling showed local volume dependency due to the effects of cache
capacity and network bandwidth. We have studied the different iterative solvers for Domain Wall
Fermion action (DWF) and found that Modified Conjugate Residual(MCR) as the most efficient
solver compared to CG and GCR. We have developed a new multi-shift MCR algorithm that is
18.5% faster compared to multi-shift CG for the evaluation of rational functions in RHMC.
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