PROCEEDINGS

OF SCIENCE

Performance of Kepler GTX Titan GPUs and Xeon
Phi System

Hwancheol Jeong*, Weonjong Lee, and Jeonghwan Pak
Lattice Gauge Theory Research Center, CTP, and FPRD,

Department of Physics and Astronomy,

Seoul National University, Seoul, 151-747, South Korea

E-mail: wlee@snu.ac.kr

Kwang-jong Choi, Sang-Hyun Park, and Jun-sik Yoo
Department of Physics and Astronomy,
Seoul National University, Seoul, 151-747, South Korea

Joo Hwan Kim, Joungjin Lee, and Young Woo Lee
Seoul Science High School, Seoul, 110-530, South Korea

NVIDIA’s new architecture, Kepler improves GPU’s performance significantly with the new
streaming multiprocessor SMX. Along with the performance, NVIDIA has also introduced many
new technologies such as direct parallelism, hyper-Q and GPU Direct with RDMA. Apart from
other usual GPUs, NVIDIA also released another Kepler ‘GeForce’ GPU named GTX Titan.
GeForce GTX Titan is not only good for gaming but also good for high performance comput-
ing with CUDA. Nevertheless, it is remarkably cheaper than Kepler Tesla GPUs. We investigate
the performance of GTX Titan and find out how to optimize a CUDA code appropriately for it.
Meanwhile, Intel has launched its new many integrated core (MIC) system, Xeon Phi. A Xeon
Phi coprocessor could provide similar performance with NVIDIA Kepler GPUs theoretically but,
in reality, it turns out that its performance is significantly inferior to GTX Titan.

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:wlee@snu.ac.kr

Performance of Kepler GTX Titan GPUs and Xeon Phi System Hwancheol Jeong

1. Introduction

On 2013, NVIDIA launched a new Kepler GPU, GTX Titan, named after the fastest super-
computer, a GPU cluster of NVIDIA Tesla K20X at Oak Ridge National Laboratory [1]. GeForce
GPUs are designed for gaming. However, GTX Titan is good for parallel computing with CUDA,
too. From the standpoint of computing, GTX Titan is as great as Tesla K20X. Nevertheless, the
price of the former is about 3 times cheaper than of the latter.

Meanwhile, in 2012, Intel announced the Xeon Phi system with Intel many integrated core
architecture (MIC) [2]. A Xeon Phi coprocessor integrates many CPU cores on a PCI express card
like GPU, so that it could, in principle, provide similar theoretical performance with GTX Titan.
The merit is that most of usual C codes which runs on CPUs can run on Xeon Phi system without
much modification, because it is a CPU-based platform. However, it turns out that its performance
is so low that it is very hard to obtain the high performance from Xeon Phi.

2. GTX Titan & Kepler Architecture

Kepl
Architecture Fermi (Glipl 82) Kepler (GK110)
X TX Tesl TX X
GPU Device G G esta G G
580 680 K20X TITAN 780
of CUDA Cores 512 1536 2688 2688 2304
Core Clock (MHz) 772 1006 732 837 863
SP GFLOPS 1581 3090 3950 4500 3977
DP GFLOPS 197 128 1312 1300 166
Memory Size (GB) 1.5 2 6 6.1 3
Memory Bandwidth |0, | 19526 250 2884 288.4
(GB/sec)
L1 cache + 64 64 64 64 64
shared memory (KB)
-onl
read-only 0 0 48 48 48
data cache (xB) ®
L2 cache (kB) 768 512 1536 1536 1536

Table 1: chip and memory specifications of recent NVIDIA GPUs

Table 1 presents chip and memory specification of NVIDIA Kepler GPUs compared with
Fermi GTX 580. GTX Titan inherits most of important features of the Kepler architecture such
as new streaming multiprocessor SMX, increased memory bandwidth and dynamic parallelism. In
addition, it supports the features provided only for Tesla or Quadro GPUs such as large memory
size and high performance in double precision floating point calculation.

Figure 1 shows the performance of conjugate gradient (CG) solver by Fermi GTX 480 and
Kepler GTX Titan without applying any optimization to Kepler GPUs. There are also other studies
presenting the performances of Kepler GPUs on Lattice QCD codes [3] [4]. Although GTX Titan’s

Performance of Kepler GTX Titan GPUs and Xeon Phi System Hwancheol Jeong

CG time (s)
128

Device CG time (ratio)

87.5 GTX 480 128 s (1)

b 1 GTX Titan | 87.55(0.68)
GTX 480 m GTX Titan

Figure 1: CG performance by GTX 480 and GTX Titan. Here, CG time means the time (in the unit
of second) which it takes to run the CG code 10 times in two GPUs.

performance are, in principle, much better than that of GTX 480, our CG code is optimized only for
Fermi GPUs and not for Kepler GPUs. Hence, it is necessary to tune the code such that it achieves
the highest performance for GTX Titan.

Fermi Kepler
simultaneous blocks / SM(X) 8 16
warp schedulers / SM(X) 2 4
registers / thread 63 255
bandwidth (GB/s) 192 (GTX 580) 288 (GTX Titan)

Table 2: changed properties related with thread and block scheduling

There are several optimization schemes possible for GTX Titan. Table 2 shows those changes
in GPUs regarding thread and block scheduling. A SMX (Kepler) has 6 times more cores than SM
(Fermi). To deal with these cores, the SMX has twice number of blocks run simultaneously and
twice of warp schedulers than SM. The number of registers per thread is also increased to 255, so
that a thread can store more variables to registers and reuse them quickly. Therefore, we might
obtain better performance by simply adjusting thread and block numbers.

The change of the memory bandwidth is also very important. Unfortunately in general, the
main bottle neck in GPUs is the limitation in data transfer speed between GPU registers and mem-
ories. The performance of a CUDA program is usually determined by the product of CGMA (com-
pute to global memory access) ratio and the amount of data transfer per time [5]. Here, CGMA
ratio means the number of floating point operations per single data transfer.

Kepler architecture has new features to improve the memory usage as follows [6].

e 8 bytes shared memory bank mode is added. Fermi GPUs provide only 4 bytes (32 bits)
mode. But Kepler GPUs provide 8 bytes (64 bits) mode, too. When this mode is turned on,
one gets about twice the effective bandwidth for double precision floating point numbers.

e Fermi GPUs only support 16 Kbytes (shared memory) + 48 Kbytes (L1 cache) and 48 + 16
modes. Kepler GPUs can allocate 32 K to shared mem and 32 K to L1.

o 48 KB Read-only data cache is added. The texture memory can be used as an additional
read-only cache memory for Kepler GPUs.

Performance of Kepler GTX Titan GPUs and Xeon Phi System Hwancheol Jeong

e Warp shuffle is introduced. By warp shuffle, data between threads in a warp can be exchanged
without using shared memory. Thus we can reduce redundant use of the shared memory.
Moreover, its latency is lower than shared memory access.

There is one more important new technology: direct parallelism. If we use it, new threads can
be spawned directly from GPU kernel, so that one can reduce communications with CPU [7]. We
are implementing the above new technologies to our GPU code.

3. GPU Direct

Recently NVIDIA introduced an advanced version of GPU Direct, called as GPU Direct
RDMA (remote direct memory access). GPU Direct is a technology by which one can improve
communication between GPUs, between a GPU and other network devices, and between a GPU
and storage devices. There are three kinds of GPU Direct [8]. GPU Direct version 1 is designed for
communication between GPU to other network or storage devices. GPU Direct version 2 provides
peer-to-peer communication between GPUs on the same PCle bus. They were already available
in Fermi architecture. The new one, GPU Direct RDMA extends this to infiniband network com-
munication between GPUs using RDMA. Unfortunately, GPU Direct RDMA is only available for
Tesla and Quadro GPUs of Kepler architecture. GTX Titan supports only GPU Direct v2.

GPUo GPU1 GPUo GPU1
Memory Memory Memory Memory

e e
H e W cudaMemcpy() H

Load / Stor
i PCl-e i i

P2P Direct Access P2P Direct Transfers

Figure 2: GPU Direct on the same PCle bus

Fig. 2 is the schematic diagram of GPU Direct v2, by which a GPU can access the memory of
another GPU on the same PCle bus or transfer data to the another without using the CPU memory.
A usual MPI + CUDA program assigns one GPU per one MPI process node. For simplicity,
consider a cluster node with 2 GPUs (GPUO and GPU1) and we run a MPI job of 2 processes. The
first MPI process (MPIO0) is assigned with CPUO and GPUO, and the second one with CPU1 and
GPU1. Then we want to transfer some data stored in GPUO’s memory to GPU1’s memory. Without
GPU Direct, we should follow a cumbersome procedure.
1. First copy the data from GPUO’s memory to CPUO’s memory by using CUDA.
2. Send the data in CPUQ’s memory to CPU1’s memory through the memory of the infiniband
network adapter by using MPL.

Performance of Kepler GTX Titan GPUs and Xeon Phi System Hwancheol Jeong

3. Copy the data to GPU1’s memory by using CUDA.

Figure 3 shows the code doing this data transfer. Whereas, this 3-step data transfer can be reduced

// GPUO to CPUO

if(rank == 0) cudaMemcpyGtoC_host(al, d_a, size);
// CPUO to CPU1l
if(rank == 0) MPI_Send(al, N, MPI_FLOAT, 1, 0, MPI_COMM WORLD);

else MPI_Recv(al, N, MPI_FLOAT, 0, 0, MPI_COMM WORLD, &status);
// CPUl to GPUl
if(rank == 1) cudaMemcpyCtoG_host(d_a, al, size);

Figure 3: data transfer without GPU Direct : GPUO — CPUO — CPU1 — GPU1

to a single step by GPU Direct (Figure 4). With GPU Direct, the data in GPUQ are transferred to
GPU1 at once by a CUDA function: cudaMemcpyPeer ().

// GPUO to GPU1l
cudaMemcpyPeer(d_al, 1, d_a0, 0, size);

Figure 4: data transfer with GPU Direct : GPUO — GPU1

Data transfer time(s)

WITHOUT] for]
Bel 14.4 14.5 13.4 GPU Direct | data transfer time (ratio)
DIRECT
off 42.3s(1)

WITH GPU

DIRECT 14.4

| | | J on 14.4 s (0.34)
GPUO» CPUO ™ CPUOP CPU1L

CPU1pGPUL = GPUOP GPU1

Figure 5: data transfer time for 107 single precision numbers (40MB) from GPUO to GPU1. Both
GPUs are GTX Titan.

Figure 5 presents the transfer times for 40MB data between 2 GTX Titan on the same PCle
bus with and without GPU Direct v.2. GPU Direct v.2 reduces the transfer time down to 1/3.

4. Xeon Phi

Table 3 presents the specification of Xeon Phi coprocessors compared with NVIDIA Kepler
GPUs. A Xeon Phi coprocessor gives, in principle, similar performance with GTX Titan theoreti-
cally. However, the theoretical performance of the Xeon Phi coprocessor includes a factor 16 comes
from vectorization. The vectorization means a parallelized calculation using SIMD instructions. A
Xeon Phi coprocessor supports 512 bit SIMD operations, so that 16 single precision calculations
can be computed simultaneously. On the other hand, this means that the actual performance of
Xeon Phi system is highly dependent on the vectorization of the code.

Performance of Kepler GTX Titan GPUs and Xeon Phi System Hwancheol Jeong

Intel Xeon Phi NVIDIA GPU
7110X | 5110P | Tesla K20X | GTX Titan

of Cores 61 60 2688 2688

Core Clock (MHz) 1333 1053 732 837
SP TFLOPS 2.44 2.02 3.95 4.5

DP TFLOPS 1.22 1.01 1.31 1.27
Memory Size (GB) 16 8 6 6.1
Mem. Bandwidth (GB/s) 352 320 250 288

Price (UsD) 4130 2650 3800 1100

Table 3: specification comparison between Intel Xeon Phi coprocessors and NVIDIA Kepler GPUs

The problem is that, it is not always possible to convert the code into a vectorized one. The
first difficulty is that one must program the code in the level of the assembly language to control
the array structure of the SIMD registers. Unfortunately, the C level compiler cannot do this job
automatically to our satisfaction [9]. The second difficulty is that our QCD code is not, in general,
designed to fit it into the structure format of specific SIMD registers required by the vectorization.
Hence, in practice, the gain of 16 in vectorization is useless to us. Therefore, in the end of day we
find out that the real performance of Xeon Phi systems is inferior to that of GTX Titan by a factor
of about 10.

CG time (s) GTX 480 Device CG time (ratio)
. GTX 480 186 s (1)
GTX Titan
1025 GTX Titan 111 s (0.60)
Xeon Phi .
186+ 111 5110P Xeon Phi 5110P 1025 s (5.5)

Figure 6: CG performance by GTX 480, GTX Titan, and Xeon Phi. Here, CG time means the time
(in the unit of second) which it takes to run the CG code 10 times in a single GPU or a single Xeon
Phi.

Figure 6 shows the performance of the CG solver by Xeon Phi 5110P compared with that by
GTX 480 and GTX Titan. Even though the code is vectorized by Intel compiler, Xeon Phi 5110P
solves CG about 5 times and 10 times slower than GTX 480 and GTX Titan respectively.

In addition to the vectorization, the scalability of the code also could be an important factor of
the performance of the Xeon Phi system. Each core of a Xeon Phi coprocessor supports 4 hardware
threads, thus about 240 parallel processes can run on it at the same time. However, if the code has
bad scalability, its performance with those 240 parallel MPI processes would be bad, too.

To resolve this issue, one can consider OpenMP. By virtue of its memory sharing functionality,
this multi-threading method usually works better with a badly scaling code than the MPI of multi-

Performance of Kepler GTX Titan GPUs and Xeon Phi System Hwancheol Jeong

processing method. There is a result where they obtained a reasonable performance by Xeon Phi
system [10]. Indeed, they not only optimized their code properly by considering the vectorization,
but also adopted the OpenMP as a parallelization method.

5. Conclusion

GTX Titan provides 1.15 GFLOPS per USD of double precision performance, which is much
better than 0.35 of Tesla K20X and 0.38 of Xeon Phi 5110P. Besides the theoretical performance,
there are many other improvements on Kepler GPUs, such as direct parallelism, Hyper-Q and GPU
Direct RDMA. By applying GPU Direct v2 to two GPUs on the same PCle bus, we achieved about
3 times gain in data transfer. We also investigated the Xeon Phi system. However, the performance
of Xeon Phi is so low (by a factor of 10) that we do not recommend using Xeon Phi systems for
the lattice QCD simulation yet.

6. Acknowledgement

The research of W. Lee is supported by the Creative Research Initiatives program (2013-
003454) of the NRF grant funded by the Korean government (MSIP). This work was supported by
SNU Undergraduate Research Program. This work was supported by Seoul Science High School
R&E program. W. Lee acknowledges support from the KISTI supercomputing center through the
strategic support program [No. KSC-2012-G3-08].

References

[1] “NVIDIA GTX Titan.” http://nvidianews.nvidia.com/Releases/NVIDIA-
Introduces—-GeForce-GTX-TITAN-DNA-of-the-World-s—-Fastest-
Supercomputer-Powered-by-World-s-Fa-925.aspx.

[2] “Wikipedia - Intel MIC.” http://en.wikipedia.org/wiki/Intel MIC.

[3] M. Clark, “Gpu computing with quda.” https://www.olcf.ornl.gov/wp-
content/uploads/2013/02/Clark_M_LQCD.pdf.

[4] H.-J. Kim, “Gpu computations for lattice qcd.”
http://thy.phy.bnl.gov/www/lunchtalks/20130523_Hyung-Jin_Kim.pdf.

[5] D.B. Kirk and W. mi W. Hwu, Programming Massively Parallel Processors : A Hands-on Approach.
Elsevier Science, 2010. ISBN:0123814723.

[6] “Kepler tuning guide.” http://docs.nvidia.com/cuda/kepler-tuning—guide/.
[7] “Kepler architecture.” http://www.nvidia.com/object/nvidia-kepler.html.
[8] “NVIDIA GPUDirect.” http://developer.nvidia.com/gpudirect.

[9] H.Jeong, S. Kim, W. Lee, and S.-H. Myung, Performance of sse and avx instruction sets, PoS (Lattice
2012) (2012), no. 249. arXiv:1211.0820[hep-lat].

[10] B.Joo, D. D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pamnany, V. W. Lee, P. Dubey, and
W. W. III, “Lattice qcd on intel xeon phi.” http://software.intel.com/en-
us/articles/optimizing-lattice—-gcd-on—-intelr—-xeon—-phitm-coprocessor.

