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1. Introduction

In measuring hadronic correlation functions, the use of interpolating operators with good pro-
jection properties onto the ground state is crucial in order to minimize unwanted contributions from
excited states. A widely-used technique is the use of covariantly smeared quark fields as part of the
construction of interpolating operators. Covariant smearing is typically implemented in an iterative
fashion by defining a smeared field [1, 2, 3]

y=C(l+aH)"vy, (1.1)

wich approximates a Gaussian shape in the free-field case.

This leads to the questions of what shapes this smearing prescription produces when used on
actual gauge ensembles, where strong interactions are present; and how to deal with cases where a
different shape is desirable. In a recent paper [4], we have given answers to these questions.

2. Covariant smearing

A generic covariant smearing operation can be written as

Y(x) =Y K(xy)y) 1)
5
with a kernel K that can be decomposed into paths via
Kxy)= Y oxUs 2.2)
PeP(xy)

where P(x,y) is some set of paths from x to y and

Ip—1
ng = Uﬂ;’ﬂ"l (x) e Ulvl%/y (x + Z éﬂy._,’) (2'3)
=1

~

is the product of links along Z.
For the most usual case of a point source Y(y) = ¢od(y — yo), this reduces to

Vi)=Y  wxUsd. (2.4
PEP(x,)0)

The norm of the source, which enters the smearing radius via

Y=ol

Fom = - , (2.5)
T Xl
X
is then given by
@I = Y osUs0 2.6)
PEP(x,y0)
= Y et Y 0r050ULUs0 @7
‘QZEP(X,y()) W,-;égz’jeP(x,O)

and thus depends on the magnetic flux through the surfaces spanned by the paths in P(x,y) [4].
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Figure 1: Distortion of a Gaussian source on a unit configuration with a single non-unit link; left: the shape
of the source, right: the ratio of the source to its counterpart on a pure unit configuration.
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Figure 2: Examples of distorted source shapes observed on actual configurations. The canonical shape
should be a wide, centered Gaussian in each case.

3. The shape of sources

The dependence of the source shape on the gauge field can be shown most easily in an artificial
setup: in fig. 1, we show the shape of a covariantly smeared source on a gauge configuration with
all but one link set to unity. It can be seen that the magnetic flux through the plaquettes containing
the non-unit link leads to both a strong local suppression of the smeared source and to an overall
shift of the source compared to its counterpart on a unit configuration.

As a consequence of such shifts and suppressions, iteratively smeared sources tend to take
bizarre, multimodal, and strongly non-Gaussian shapes on typical configurations (cf. fig. 2), in
particular as the iteration count n in eq. (1.1) is increased.

Averaging over such distorted sources leads to an observed decrease of the achievable smear-
ing radii with decreasing lattice spacing, as can be seen in the “smearscapes” (plots of rgy, against
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Figure 3: “Smearscapes” demonstrating the dependence of the smearing radius on the smearing parameters
(kG = 124, n) for the free case (top left) and for a range of lattice spacings (top right: a ~ 0.076 fm, bottom
left: a =~ 0.066 fm, bottom right: a ~ 0.049 fm). The radius corresponding to rgn = 0.5 fm is shown as a
semi-transparent plane.

kg and n) of fig. 3. As the lattice spacing a is decreased, the iteration counts required to reach
rsm ~ 0.5 fm increase rapidly, making bizarrely distorted source shapes more and more dominant.

It has been known for a while that large smearing radii are unattainable without the use of link
smearing in the smearing kernel [7]. With link smearing, larger radii can be reached, but, as the
comparison in fig. 4 shows, the shapes of the sources do not become less distorted for moderate
amounts of smearing. (Except for the two plots shown in fig. 4, all results shown employ a single
iteration of APE link smearing [5, 6]).

The strong distortion of the sources throws doubt on the usefulness of covariant smearing as
an effective means of suppressing excited state contributions, since it is unclear why the projection
on the ground state should be particularly good for these odd shapes.

4. Free-form smearing

It is therefore desirable to find a method that allows one to covariantly smear sources with large
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Figure 4: An example of the effect of link smearing on the shape of an iteratively smeared source: left:
using thin links, right: using three iterations of APE [5, 6] link smearing on the same configuration with all
other parameters exactly the same.

Figure 5: Examples of free-form smeared sources; left: a Gaussian shape, right: a Gaussian modulated by
radial oscillations, as an example of a source shape with nodes.

smearing radii. Another feature that would be highly desirable in a covariant smearing method
would be the ability to create wavefunctions of non-Gaussian forms (e.g. hydrogen-like wavefunc-
tions), which currently is possible only in a non-covariant gauge-fixed approach.

To achieve both of these ends, we have proposed the following method (“free-form smearing”

[4]):

1. using iterative covariant smearing, calculate y'(x) = [(1+ aH)"];,0(y — yo)@o, with n cho-
sen small, but large enough to touch all points on a timeslice,

), and

2. determine the gauge average N (x H v (x }

3. define the free-formed smeared source as ¥(x) = ¥/ (x) f(x— yo)/N(x).
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Figure 6: Effective mass plots showing the effects of free-form smearing with Gaussian shapes of varying
radius; fop: pion, bottom: nucleon; the iterative smearing used to build the set of paths is shown in black.

By construction, the free-form smeared source satisfies (| @(x)||) = |[f(x— yo)|H¢o|| in the gauge
average. Note that N(x) only needs to be computed once on each ensemble to be able to free-form
smear with arbitrarily many shapes f afterwards.

In fig. 6, we show effective mass plots for the pion and nucleon on an a ~ 0.066 fm CLS
ensemble. Shown in black are the effective masses for the iteratively smeared source Y’ used as
the basis, while the coloured points represent free-form smeared sources { of Gaussian shape with
different radii. It can be seen that the use of free-form smeared sources with large radii leads to a
significant suppression of excited-state contamination for the nucleon (and less so in the pion case),
which allows a reliable plateau fit at much earlier times. We expect that this will make free-form
smearing particularly useful for baryon spectroscopy.
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5. Discussion

The significant distortions of the shape of iteratively smeared covariant sources in the presence
of non-trivial gauge field backgrounds limits the smearing radii which can be used, particularly so
at small lattice spacing. This poses a problem particularly in baryonic channels, where suppression
of excited states is especially important to provide a good plateau region.

To avoid this problem, we propose a novel smearing procedure, which we call “free-form”
smearing, that enables the use not only of Gaussians of arbitrary width, but also of other source
shapes not available through iterative methods of covariant smearing.

While free-form smearing in its current form cannot be readily used for sink smearing, we ex-
pect it to be extremely useful for many spectroscopic applications and plan to apply it to improving
the determination of the lattice spacing using the mass of the Q previously performed in [8].
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