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1. Chiral symmetry on the lattice

Chiral symmetry on the lattice can be realized by a Dirac operator that satisfies the Ginsparg-
Wilson relation [1]. This class of the Dirac operator is represented by the form [2]

D =
M0

a
[1− γ5sgn(aHK(−M0))] , HK(−M0) ≡ γ5DK(−M0), (1.1)

with some kernel operator DK and a matrix sign function. The parameter M0 also appears in the
definition of DK as a (negative) mass term; its value is typically in the range between 1.0 and
1.8, chosen such that the number of near-zero modes of HK is minimized. In practice, exactly
calculating the sign function is extremely costly for a large matrix HK , and one has to introduce
some approximation of it, such as the polynomial or the rational function. Such approximation
becomes more difficult for the eigenvalues of HK near zero, where sgn is singular.

In the overlap fermion formulation the kernel operator HK is the hermitian Wilson-Dirac opera-
tor DW , while the standard domain-wall fermion has the kernel of the form HT ≡HW /(2+DW ). For
the sign function approximation one typically uses the optimal rational approximation (Zolotarev)
for the overlap fermion, and the polar or hyperbolic tangent (Tanh) approximation for domain-wall,
but other choices or combinations can give an equally good implementation of the representaion
(1.1). The practical question is therefore how precisely one can approximate the sign function, and
it determines how well the resulting operator preserves chiral symmetry.

In this work we test various choices of the kernel and approximation by examining their resid-
ual mass and numerical costs. The residual mass is a measure of the violation of the Ginsparg-
Wilson relation. The five-dimensional construction of D is useful as it allows us to easily switch
from one choice to another by simply setting parameters. In the next section we briefly describe
the formulation we took. Numerical results are presented in the following sections.

2. Generalized 5D representation

We follow the five-dimensional (5D) representaions summarized by Edwards and Heller [3]
(for the original ideas, see the references therein). In this generalized 5D representation, one defines
a 5D fermion field ψ5 and a lattice action SGSW = ∑x ψ̄5D5

GDW ψ5 with a 5D operator

D5
GDW =



(D1
−)−1D1

+ −P− 0 · · · 0 mP+

−P+ (D2
−)−1D2

+ −P− 0 · · · 0

0 −P+ (D3
−)−1D3

+ −P−
. . .

...
... 0

. . . . . . . . .
...

0 · · ·
... −P+ (DLs−1

− )−1DLs−1
+ −P−

mP− 0 · · · 0 −P+ (DLs
− )−1DLs

+


, (2.1)

where Ds
+ ≡ 1 + bsDW (−M0), Ds

− ≡ 1− csDW (−M0) and P± = (1± γ5)/2. Here bs and cs are
numerical constants depending on the fifth coordinate s. After an unitary transformation and a
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Schur decomposition followed by an introduction of a Pauli-Villars field, one can derive a four-
dimensional action S(4) = ∑x ψ̄D(4)ψ with a 4D effective operator

D(4) ≡ 1+m
2

− 1−m
2

γ5
T−1

1 T−1
2 · · ·T−1

Ls
−1

T−1
1 T−1

2 · · ·T−1
Ls

+1
(2.2)

acting on 4D fields ψ̄ and ψ . Here T matrices are defined as T−1
s ≡ −(Qs

−)−1Q−1
+ and Qs

± ≡
(Ds

−)−1Ds
+P∓−P±. This gives an operator corresponding to (1.1) with a sign function approxi-

mated by ε = (1−∏s Ts)(1 + ∏s Ts). The relation between the 5D and 4D operators can also be
written as

D(4) =
[
P−1(D5

GDW (m = 1))−1D5
GDW (m)P

]
11 , (2.3)

where D5
GDW (m = 1) plays the role of the Pauli-Villars operator. P is an projection operator that

distributes right-handed and left-handed components of the 4D field to the opposite surfaces of
the 5D lattice. The subscript 11 on the right hand side implies that one takes a 4D block on the
upper-left corner of the entire 5D matrix.

By setting the parameters bs and cs as bs + cs = bωs and bs − cs = c, one can select the kernel
and approximation. The kernel HK is given through

T−1
s =

1+ωsHK

1−ωsHK
, HK = γ5

bDW

2+ cDW
. (2.4)

The Wilson kernel corresponds to (b,c) = (2,0) while the kernel for the standard domain-wall
fermin HT is given by (b,c) = (1,1). By varying b while fixing c = 1, we obtain the so-called
Möbius domain-wall operators [4]. In this work we tested b = 1 and 2, the latter of which is nearly
optimal to minimize the residual mass for Ls around 8–12.

The Tanh approximation is obtained by a simple choice ωs = 1, with which

ε(HT ) =
(1+HT )Ls − (1−HT )Ls

(1+HT )Ls +(1−HT )Ls
. (2.5)

On the other hand, the rational function approximation can be obtained by choosing ωs depending
on s. The optimal choice in a given range of the eigenvalues of HK is that of Zolotarev, which leads
to Chiu’s optimal domain-wall fermion [5].

For the kernel, there is another option of choosing the link smearing that enters in the Wilson-
Dirac operator DW . We apply the stout-link smearing [6], Nsmr times, with Nsmr = 0–3. The
smearing parameter ρ is taken to be 0.1 in this work. We confirmed that the near-zero eigenvalues
of HW are substantially suppressed [7]. It means that a better approximation of the sign function
is possible for the same amount of computational cost, and the residual mass is reduced as we will
see in the following.

3. Numerical tests

We implemented this generalized 5D formulation in our QCD software package Iroiro++,
which includes a highly optimized code for IBM Blue Gene/Q [8].

Our numerical tests are performed on 30 gauge configurations of a 163 ×32 lattice generated
with the tree-level Symanzik gauge action and with two-flavors of dynamical fermions. (The details
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Figure 1: Residual mass with the Tanh approximation is plotted as a function of Ls. Open (filled) symblos
show the data without (with) the smeared link. Circles are those with the conventional Tanh approximation,
while those with a scale factor 2 are shown by squares.

of the fermion formulation for the sea quark would not be important for this study.) The lattice
spacing determined through the r0 scale is about 0.08 fm.

We quantify the amount of chiral symmetry violation using the residual mass mres, which is
measured as

mres =
〈trG†∆LG〉
〈trG†G〉

, (3.1)

following [9]. Here G denotes a quark propagator from some source, for which we chose a random
noise distributed all over the lattice. The chiral symmetry violation is represented by an operator
∆L defined through

2γ5∆L = γ5D(4) +D(4)γ5 −2D(4)γ5D(4), (3.2)

which could also be written as 4∆L = 1− sgn2(HK). By construction, it probes the violation of the
Ginsparg-Wilson relation. The residual mass calculated using (3.1) has only a minor valence quark
mass dependence, which is irrelevant for the purpose of this study. We chose a valence quark mass
am = 0.027.

3.1 mres with Tanh approximation

Figure 1 shows the residual mass calculated for the HT kernels combined with the Tanh ap-
proximation. With the simple choice of HT without the smeared link (open circles, black (M0 = 1.0)
and red (M0=1.6)), the residual mass stays relatively large (> 0.001) unless Ls is set greater than 16.
With the lattice cutoff 2.5 GeV of the configurations used in this study, mres = 0.001 corresponds
to 2.5 MeV, which is small but still non-negligible compared to the physical up and down quark
masses ∼5 MeV. We therefore require the residual mass to be 0.0004 or smaller, which is less than
1 MeV. With a scale factor b = 2 (denoted as 2HT in the plot, blue open squares), this condition is
satisfied. Further introducing the link-smearing Nsmr = 3 (filled red squares) we are able to reach
mres = 0.0001 already at Ls = 12, which corresponds to 0.5 MeV in the physical unit.
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Figure 2: Residual mass with the Zolotarev approximation is plotted as a function of the lower limit λmin

of the approximation range [λmin,λmax], which is applied for the kernel operator 2HT . The maximum value
λmax is fixed to 1.65. Results are shown for Ls = 8, 12, 16 and 24.

3.2 mres with Zolotarev approximation

With the optimal rational approximation (Zolotarev) there are parameters to control the range
of the sign function approximation [λmin,λmax], which is applied for absolute values of the eigen-
values of the kernel operator HK . The eigenvalues in this range are approximated to a very good
accuracy while those below λmin are significantly away from the sign function.

The plot in Figure 2 shows mres calculated with various values of λmin. The kernel is HK = 2HT .
For a given value of Ls, which determines the degree of the rational function, there is a value of
λmin where mres is minimized. This is understood because: if λmin is too high, there are more modes
out of the range of approximation, while if λmin is too low the approximation becomes less precise
over the entire region. Therefore, mres tends to increase on the both ends.

With Ls = 12 we can achieve amres better than 0.0001, which corresponds to the best choice
we found among the Tanh approximations (Figure 1). This can be achieved without fine tuning of
λmin.

We obtain very similar results with the Wilson kernel.

4. Numerical cost

Naively, the numerical cost for the 5D formulations is proportional to Ls. There is however an
additional significant factor due to the condition number of the 5D matrix that affects the number
of conjugate gradient iterations Ninv needed to invert the 5D matrix. Instead of calculating the
condition number of the 5D matrix, we simply monitor Ninv for an inversion of D5

GDW (m = 1), i.e.
the Pauli-Villars operator. Then, we use NinvLs as a measure of the computational cost for each
kernel and approximation.

In Figure 3 we compare the cost of the Tanh and Zolotarev approximations for the 2HT kernel.
As it should be compared for an equal value of mres, we plot mres versus NinvLs. Even for a fixed
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Figure 3: Residual mass plotted as a function of the cost measure NinvLs. Here, Ninv is the number of the
conjugate gradient iterations to invert the Pauli-Villars operator D5

GDW (m = 1), which is required to construct
the 4D effective operator (2.3). Colored solid curves are the results with the rational function approximation
(Zolotarev) with Ls = 12 (red), 16 (green) and 24 (blue). Circles connected by black lines are those with
Tanh for various Ls (= 8, 12, 16, 20, 24, ...). Points for Ls = 8, 12 and 16 are shown with colors corresponding
to the Zolotarev curves.

Ls, the result for the rational function approximation (Zolotarev) varies as large as a factor of 3–5.
This is due to the choice of λmin, i.e. Ninv rapidly grows as λmin is reduced (in the range indicated in
Figure 2). For a fixed Ls (in the range of our target Ls ∼ 12–24) the cost with Tanh is always lower
than Zolotarev (as compared by a dot and a curve of the same color). Roughly speaking, using
Zolorarev, mres can be made as small as a half of that with Tanh, at the cost more than a factor of
two more computational cost. Therefore, unless we aim at realizing mres smaller than 4× 10−4,
Tanh is more cost effective.

On the other hand, if we need to achieve mres ∼ 10−4, Zolotarev is clearly better, since Tanh
cannot reach that level unless Ls is as large as 96.

5. Summary

This study was initiated to look for the best choice of the nearly chiral lattice fermion action
in terms of mres and numerical cost. In order for mres to be negligible in the physics analysis, we
require mres . 0.5 MeV, which is much smaller than the physical up and down quark mass. At the
lattice spacing a . 0.08 fm, this can be achieved with Ls = 8 or 12 using the Tanh approximation
with a scale factor b = 2. In the on-going project by the JLQCD collaboration, this choice is
adopted together with the link-smearing Nsmr = 3. A detailed study of the computational cost for
the Hybrid Monte Carlo simulation is presented in [10], and a feasibility study of reweighting to
exactly chiral fermion is found in [11].

We are currently generating gauge configurations of 2+1 flavors of sea quarks using the nearly
chiral lattice fermion as described above. For the study of heavy flavor physics, fine lattices of 1/a
= 2.4, 3.6 and 4.8 GeV are planned on 323 ×64, 483 ×96 and 643 ×128 lattices. Light quarks are
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taken in the range of pion mass between 220 and 500 MeV keeping the sufficient lattice volume
to control the finite volume effect, mπL > 4. So far, we have accumulated our initially targeted
statistics on 323 lattices and runs are on-going on 483 ×96. Physics analysis has just started [12].

Numerical simulations are performed on Hitachi SR16000 M1 and IBM Blue Gene/Q at High
Energy Accelerator Research Organization (KEK) under a support of its Large Scale Simulation
Program (No. 12/13-04). This work is supported in part by the Grant-in-Aid for Scientific Research
(No. 21674002, 25287046, 25800147), the Grant-in-Aid for Scientific Research on Innovative Ar-
eas (No. 2004: 20105001, 20105002, 20105003, 20105005, 23105710), and SPIRE (Strategic
Program for Innovative Research).
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