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1. Introduction

Lattice QCD provides a non-perturbative method for investigating strong QCD by Markov
Chain Monte-Carlo methods in Euclidean space-time. If one is interested in the hadron spectrum,
lattice QCD is a very powerful tool for determining the ground states in a given channel. Higher ex-
citations or even resonances, however, are much more intricate, because exponentially suppressed
contributions must be disentangled from correlator data plagued with statistical noise.

It is well known that correlator matrices are of significant help in such a situation. With the
variational approach [1, 2, 3] or factorising fit models, excited energylevels can be determined
from such a matrix. Furthermore, the larger the matrix the more energy levels can be extracted
with confidence.

However, building a correlator matrix from a large basis of operators is a demanding task,
both in computational resources and in storage space. With these challenges in mind the Lapla-
cian Heaviside smearing (LapH) method [4] and its stochastic version (sLapH) [5] were invented,
leading to remarkable results, see for instance Refs. [6, 7, 8]. Its particular strength lies in the
possibility to construct a large number of operators from a fixed (but large) number of inversions.

In this proceeding contribution we will investigate sLapH for the case of the Wilson twisted
mass formulation of lattice QCD [9]. In particular, we compare sLapH with more conventional
methods for the case of theη ,η ′ mesons, which obtain significant contributions from disconnected
diagrams.

2. Stochastic LapH Smearing

The LapH method is a smearing method based on the Laplace operator∆̃ which is decomposed
into its eigensystem

∆̃ =V∆Λ∆V †
∆ . (2.1)

The matrixV∆ contains all eigenvectorsv andΛ∆ is a diagonal matrix containing the eigenvalues.
A smearing matrixS

S =V∆Θ
(
σ2

s +Λ∆
)

V †
∆ =VsV

†
s , (2.2)

can be defined, whereΘ(·) is the Heaviside function. Therefore, all eigenvalues larger than a cutoff
σ2

s are neglected and the matrixVs consists only of the eigenvectors belonging to the eigenvalues
smaller thanσ2

s . The number of eigenvalues needed depends on the spatial volume of the lattice
and the parameterσ2

s . It was found thatσ2
s = 0.33 is optimal [5] for excited state suppression

independent of the operator. On a 483×96 lattice, for example, this amounts to 900 eigenvectors
per timeslice. In the same reference it was shown that the shape of the source is approximately
Gaussian.

A quark lineQ can be written in terms of the smearing matrix

Q = D( j)
S Ω−1

S D(k)† = D( j)Vs (V
†
s Ω−1Vs) V †

s D(k)† , (2.3)

whereD( j) is a covariant derivative.P =V †
s Ω−1Vs is called perambulator,Ω = γ4M, γ4 is a Dirac

matrix, andM being the lattice Dirac operator. The computation ofΩ−1v must be performed for
each eigenvectorv, which is a significant drawback of this method, in particular for large lattice
volumes.
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2.1 Stochastic LapH

In order to overcome this drawback the stochastic LapH method was introduced in Ref. [5].
Random noise vectorsρ which live in the time, Dirac- and Laplace eigenspace should reduce the
computational cost and not change the result significantly if the following relations hold

E(ρi) = 0 and E(ρiρ∗
j ) = δi j , (2.4)

whereE(·) denotes the expectation value. The propagatorΩ−1 can then be calculated approxi-
mately by solving

ΩX r = ρr (2.5)

for NR different random vectorsρr. Dilution can be used to enhance the signal-to-noise ratio. The
improvement factor is proportional to 1

Nd
√

NR
, whereNd is the number of dilution vectors. Therefore,

the signal-to-noise ratio ameliorates proportional to the number of inversionsdone. The dilution
factorises into three subspaces, time, Dirac- and eigenspace and thus different dilution scheme can
be applied in each subspace. In Ref. [5] four basic dilution schemes arediscussed

P(b)
i j = δi j, b = 0, (no dilution)

P(b)
i j = δi j δbi, b = 0, . . . ,N −1, (full dilution)

P(b)
i j = δi j δb,⌊Ji/N⌋, b = 0, . . . ,J−1, (block-J)

P(b)
i j = δi j δb, i modJ, b = 0, . . . ,J−1, (interlace-J) ,

whereN is the size of the subspace (time, Dirac- and eigenspace) andN/J is an integer.Nd is 1
for no dilution,N for full dilution and J for interlace or block dilution. Another possibility for a
dilution scheme would be to combine the interlace and the block dilution schemes.

Using random noise vectors and a dilution scheme, one arrives at a similar expression for the
stochastic quark lines as in eq. 2.3

Q = ∑b E
(
D( j)S Ω−1VsP(b)ρ (D(k)VsP(b)ρ)†

)
. (2.6)

Here, the first part,φ =D( j)S Ω−1VsP(b)ρ, acts as a quark sink and the second part,η =D(k)VsP(b)ρ
as a quark source. A stochastic perambulatorPs can be defined

Ps =VsΩ−1VsP
(b)ρ . (2.7)

Its computation is the computationally most expensive part of this method. However, the number
of inversions which need to be performed only depends on the number of random vectors and the
dilution scheme. The volume dependence of the non-stochastic LapH method has almost disap-
peared and appears only very mildly in certain dilution schemes if at all. This might be useful for
larger lattices with many eigenvectors.

To illustrate the problem of computational cost and storage, the number on inversions and
the storage space needed for a 483 × 96 lattice is calculated. 900 eigenvectors per timeslice are
needed and hence the matrixVs would need roughly 427 GB of storage space. To calculate the
full perambulatorP, 900· 96· 4 = 345600 inversions would have to be performed and the final
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perambulator would need approximately 1780 GB. The computational cost ofthe inversions and
the storage requirements make it unfeasible to use this method for larger latticesat the moment.

Using the stochastic ansatz reduces the computational cost significantly. Withfull dilution
in time and in Diracspace and an interlace-8 dilution in eigenspace (TF,DF,LI8), the number of
inversions would reduced to 3072, while the storage space would reduceto 15.8 GB. Usually, it is
not necessary to use full dilution in time, the computational cost could be reduced further. Using
an interlace-16 scheme in time (TI16,DF,LI8) would result in 512 inversions and a storage size of
only 2.6 GB. The latter scheme is entirely independent of the lattice size.

3. Numerical Experiments

3.1 Simulation parameters

Our simulations were performed on theA60.24 ensemble withN f = 2+ 1+ 1 dynamical
Wilson twisted mass fermions as produced by the European Twisted Mass collaboration [10, 11,
12]. The volume of this lattice isV = 243 ·48 with a lattice spacing ofa= 0.086 fm, and a pion mass
of about 390 MeV. In total, 314 gauge configurations were used. For strange and charm quarks the
so-called Osterwalder-Seiler mixed action [13] withaµs = 0.02322 andaµc = 0.27678 (c. f. [14])
was used. More details on this approach can be found in a contribution to thisconference [14]. The
inversions and the computation of the eigenvectors were performed with the tmLQCD software
suite [15].

The Euclidean correlation functions for theη ,η ′ system is given by

C (t)qq′ = 〈Oq(t
′+ t)Oq′(t

′)〉 , q,q′ ∈ ℓ,s,c , (3.1)

where the operatorsOℓ = (ūiγ5u+ d̄iγ5d)/
√

2, Os = s̄iγ5s andOc = c̄iγ5c were used. For this oper-
ator basis the resulting matrixC is a 3×3 matrix which is diagonalised by solving the Generalised
Eigenvalue Problem. The effective masses

aM(n) =− log(λ (n)(t, t0)/(λ (n)(t +1, t0)) (3.2)

are computed from the eigenvaluesλ (n)(t, t0). In this ansatz theη meson corresponds to the ground
state (n = 0) and theη ′ meson to the first excited state (n = 1). The second excited state (n = 2)
corresponds to theηc meson but cannot be resolved due to the small correlation matrix. In addition,
we investigate the disconnected contribution to the neutral pion, corresponding to the operator
Oπ0 = (ūiγ5u− d̄iγ5d)/

√
2.

For the calculation of the eigenspace of the Laplace operator, two iterationsof 3D HEX [16]
smearing with parameters(0.76,0.95) were applied to the spatial gauge fields. On each timeslice
we calculated 120 eigenvectors and we used the previously introduced dilution scheme (TF, SF,
LI8).

The sLapH method is tested against a standard approach of computing correlation functions.
In this standard approach, connected diagrams were computed by using stochastic timeslice sources
and the so called “one-end-trick” [17]. Disconnected diagrams which need an all-to-all approach
were sampled using 24 stochastic volume sources with complex Gaussian noise. Two different
methods were used to improve the signal-to-noise ratio. The first one is a hopping parameter
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Figure 1: Disconnected contribution to theπ0 (left) and theηℓ (right) correlation functions are
shown. Both are normalised tot/a = 1. The points are slightly displaced for better legibility.

variance reduction scheme, see Ref. [17], which will be denoted with sGVS. The second one is
only available for theη ,η ′ system in the twisted mass formulation and it relies on the identity [18]

D−1
u −D−1

d =−2iµlD
−1
d γ5D−1

u , (3.3)

whereDu,d are the up and down lattice Dirac operators andµl is the twisted mass parameter corre-
sponding to the light quarks. It can be applied for strange and charm quarks as well by introducing
a doublet of strange (charm) quarks, see Ref. [14] for details. This noise reduction will be denoted
by improved sGVS.

The efficiency of sLapH as a smearing method to suppress excited state contribution can be
tested by comparing the effective mass plateaus computed from sLapH, sGVS and improved sGVS.
In the latter two methods only local operators were used and the size of the correlation matrix was
3x3. Hence, a direct comparison was possible and a notable reduction ofexcited state contributions
in case of sLapH should be observable.

3.2 Correlation functions

The disconnected parts of the correlation functions for theπ0 and theηℓ are shown in Figure 1.
They are normalised toD(1) due to an unknown normalisation factor in sLapH. Theηℓ contains
only the light quark contributions to theη andη ′ mesons. Within errors, the results obtained from
different methods for these observables do agree quite well. While the errors for the disconnected
part of theπ0 are compatible in between sLapH and sGVS, sLapH and improved sGVS turn out
to outperform sGVS for the disconnected part of theηℓ. sLapH and improved sGVS give roughly
equal error estimates with a slight advantage for sLapH. However, the computation cost is a factor
24/512 in favour of improved sGVS.
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Figure 2: (left) Effective mass plot of theη (squares) andη ′ (circles) using the sGVS method (full
symbols) and the sLapH method (empty symbols). (right) The same as (left), but with connected
contributions only. The points are slightly displaced for better legibility.

3.3 Effective Masses

In the left panel of Figure 2 the effective masses of theη (filled symbols) and theη ′ (open
symbols) are shown for the sGVS and sLapH method. General agreementwithin errors can be
observed. However, the number of gauge configurations and the size of the correlation matrix are
too small to obtain a good signal for theη ′ state.

Unfortunately, sLapH seems not to suppress excited states very much, only at t/a= 2,3 a small
effect can be observed. This can be seen even better by looking at theconnected correlators only,
corresponding to a connected neutral pion and the so calledηs state, a pion made out of strange
quarks. The effective masses of these states are shown in the right panel of figure 2. The poor
suppression of excited state contributions might be due to poorly chosen parameters for the link
smearing used in the Laplace operator. The eigenvalues of the Laplace operator are squeezed quite
strongly for our choice of smearing parameters compared to unsmeared gauge links. This results
in a more shallow increase of the eigenvalues. In conclusion, much more eigenvectors would
be needed to achieve a good reduction of excited state contributions. Well chosen link smearing
parameters should have the very opposite effect and stretch the spectrum of the Laplace operator.
Hence, less vectors would be needed to gain a good reduction.

4. Summary

In this article we presented a first test of the sLapH method in comparison to standard stochas-
tic methods in the twisted mass formulation for theη , η ′ mesons. The results for the meson
masses extracted from the different methods do agree within errors but with the sLapH method
being roughly 20 times more expensive. However, the higher expense, which comes mainly from
the increased number of inversions, can be put into perspective by noting that the inversions, which
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can be easily stored in form of perambulators on a hard drive, can be reused for other observ-
ables. In addition, the contractions to build correlation functions are cheaper for the sLapH method
compared to standard methods which would become more relevant for a larger operator basis.

As a surprise we did not observe that sLapH suppresses excited statesefficiently. In fact,
in a comparison to a local-local correlator matrix we see only marginal improvements. This is
most probably due to a bad tuning of link smearing in the Laplace operator. The explicit impact
of the link smearing and the impact of the lattice spacing on the efficiency of sLapH are under
investigation at the moment.

Other physical channels will be studied as well. sLapH clearly still has the advantage of
providing the possibility to compute many operators for a fixed number of inversions.

We thank all members of ETMC for the most enjoyable collaboration. This workis supported
in part by DFG and NSFC (CRC 110).
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