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1. Introduction

The QCD contributions to the photon vacuum polarisation function (VPF), Π(q2), are cur-
rently responsible for a large fraction of the theoretical uncertainties in the determination of the
anomalous magnetic moment of the muon aµ or of the running of the QED coupling constant
αQED. The VPF depends on the squared momentum transfer q2. In the space-like (Euclidean)
region, the large q2 regime of the VPF can be suitably described by perturbative QCD (pQCD)
due to the properties of asymptotic freedom and the absence of resonance effects. On the other
hand, the low-energy structure of QCD, where confinement and the spontaneous breaking of chiral
symmetry are prominent, is beyond the domain of validity of pQCD. These non-perturbative strong
interaction effects are responsible for the large uncertainties in the hadronic contribution to aµ .

In a study of the q2-dependence of the VPF, the question of the regime of validity of the
pQCD expansion in powers of strong coupling αs needs to be addressed. An additional ingredient
can be considered in this analysis, by performing an operator product expansion (OPE) of the two
currents defining the vacuum polarisation tensor Πµν(q). In this way, non-perturbative effects
can be incorporated through terms formally organised in an expansion in powers of 1/q2 up to
logarithms. In the OPE, the operator matrix elements will capture the long-range strong interaction
properties while the perturbative Wilson coefficients will encode the short distance physics.

Lattice QCD provides a robust method to study the q2-dependence of the VPF and of its
logarithmic derivative which is related to the Adler function. In this way, both the low-energy
regime that is essential for current phenomenological studies, and a region of larger q2 values can
be studied from first principles. If this high-energy regime is sufficiently large such that contact
with pQCD can be safely made, then the lattice measurement of Π(q2) provides a way to determine
the coupling αs and to derive the scale parameter ΛQCD.

The matching of a lattice determination of Π(q2) to its OPE counterpart should thus be done
at sufficiently large q2 values in order to guarantee the good convergence properties of the pertur-
bative expansion. However, lattice discretisation effects increase with q2 and should be considered
under control provided that the momentum transfer remains much smaller than the cutoff, i.e.
(aq)2� 1. Since the typical values of the lattice spacing a of current simulations are in a region,
a−1 ∈ [2,4]GeV, the q2 values should satisfy q2 � 16GeV2 for the finest values of a and even
stronger constraints for coarser lattice spacings. Assuming that these constraints allow to identify
a region of q2 where the lattice VPF can be matched to the OPE, it is still important that this region
is sufficiently large in order to probe the expected logarithmic dependence in q2 of the VPF.

The lattice group in Mainz has a dedicated research program [1] aiming at a precise deter-
mination of physical observables related to the VPF. In this study, we explore the possibility of
performing such a matching of the lattice VPF to pQCD in order to determine ΛQCD. Two ingredi-
ents are particularly relevant for this analysis: (i) the existence of statistically accurate lattice data
for the VPF over a relatively large interval of q2, with sufficient values of the lattice spacing in order
to monitor the size of discretisation effects and (ii) the availability of pQCD results to high-order
in the αs expansion.
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2. The Vacuum Polarisation Function and its Operator Product Expansion

The Euclidean hadronic vacuum polarisation tensor is defined as,

Πµν(q) =
∫

d4xeiqx 〈Jµ(x)Jν(0)〉 , (2.1)

where the vector current reads,

Jµ(x) =
Nf

∑
f=1

Q f ψ f (x)γµψ f (x) . (2.2)

We consider the Nf = 2 theory for which ψ f (x) = (ψu,ψd) is made of mass-degenerate quark fields
with electric charges Q f = (2/3,−1/3). Euclidean invariance and current conservation lead to,

Πµν(q) = (gµνq2−qµqν)Π(q2) . (2.3)

The VPF Π(q2) can be decomposed into non-singlet and singlet contributions. In the following,
only quark-connected contributions to the VPF will be considered both on the lattice and in per-
turbation theory. For large space-like momenta, the non-singlet contribution to the VPF can be
expressed in the OPE in the following way,

ΠOPE(αs,q2,m f ) =
5
9

{
c + c0(αs,µ

2,q2) + cm(αs,µ
2,q2)

(m f (q))
2

q2 (2.4)

+ cΣ(αs,µ
2,q2)

m f 〈ψ f ψ f 〉
q4 + c4(αs,µ

2,q2)
〈O(4)

OPE〉
q4

}
+ O

(
1
q6

)
.

The constant c in the first term is scheme-dependent and diverges in the limit of infinite cutoff.
The Wilson coefficients c0, cm, cΣ and c4 in eq. (2.4) can be computed in perturbation theory and,
depending on the case, they are known from 1- to 4-loop order in the αs expansion [3 – 5]. The
non-perturbative physics is encoded in the condensates 〈ψ f ψ f 〉, 〈O(4)

OPE〉, . . .
The perturbative expressions are defined in the MS scheme. The connection of the coupling

αs to the scale parameter Λ
(Nf=2)
MS

is given by the 4-loop β -function [6]. The renormalised quark
mass m f (µ) refers to the quark mass at the renormalisation scale µ [2, 7]. For a physical quantity
such as the Adler function, D(q2) = −12π2 dΠ(q2)/d log(q2), the contribution from the constant
c in eq. (2.4) vanishes and the contributions from other terms remain finite. Moreover, any scheme
and scale dependence should disappear as higher order terms are included.

3. Lattice Determination of the VPF and OPE fits

The lattice action is made of two flavours of non-perturbatively O(a) improved Wilson fermions
and the Wilson plaquette gauge action. We use a lattice version of the vacuum polarisation ten-
sor in eq. (2.1) where the local current, J(l)µ (x) = ZV ψ f (x)γµ ψ f (x), is inserted at the source

and the point-split conserved current J(p.s)µ (x) at the sink. The lattice momentum is given by
q̂µ = 2/a sin

(
aqµ/2

)
, where qµ = 2πnµ/L and nµ ∈ [0, 1, . . . , L/a−1].
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β a [fm] lattice L [fm] mπ [MeV] mπL |aq̂|max Ens.
5.20 0.079 64×323 2.5 312 4.0 1.05 A5
5.30 0.063 64×323 2.0 451 4.7 1.05 E5

96×483 3.0 324 5.0 F6
5.50 0.050 96×483 2.4 430 5.2 0.93 N5

330 4.1 N6
128×643 3.2 260 4.4 O7

Table 1: Ensembles – generated by the CLS initiative – with two flavours of O(a) improved Wilson fermions
used in this study.
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Figure 1: (a) The lattice VPF Π(q̂2) as determined from the ensembles in table 1. (b) Continuum-limit
scaling analysis of the Adler function, D(q̂2

ref), at a reference momentum transfer q̂2
ref = 5.5GeV2.

The ensembles used in this study are listed in table 1. Three values of the lattice spacing –
including ensembles with a cutoff a−1 ≈ 4 GeV – are used to monitor the size of discretisation
effects. The maximal values of the momentum |aq̂|max at which the VPF has been computed are
also reported table 1. The q̂2 range where the VPF has been determined is also illustrated in
fig. 1(a) where the vertical displacement among data from different lattice spacings mainly arises
from the unphysical constant c in eq. (2.4). The comparison of ensembles with different quark
masses indicates that, given the current statistical precision on the VPF (below 1%), mass effects
are rather small for q̂2 > 4GeV2.

The Adler function D(q̂2) is a convenient observable to monitor cutoff effects in the q̂2 depen-
dence of the VPF. Indeed, D(q̂2) is dimensionless and, as already mentioned, the contribution from
unphysical constant c in eq. (2.4) vanishes. We perform a continuum limit scaling analysis of the
Adler function at a reference momentum transfer, q̂2

ref = 5.5GeV2. At this rather large value of q̂2,
non-negligible contributions from cutoff effects can be anticipated. Since the VPF is derived from
an off-shell matrix element, we expect that O(a) discretisation effects can be present in D(q̂2

ref). In
this preliminary study, the pion masses were not kept fixed to a reference value when approaching
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Figure 2: Illustration of a fit to the OPE expression in eq. (2.4) supplemented with terms of O((aq̂)2) and
O(a2 log(q̂2)) to parametrise the lattice artefacts. Ensembles – N6, E5 and A5 in table 1 – with three different
values of the lattice spacing were considered in the combined fit. The fit parameters – Λ

(Nf=2)
MS

, 〈O(4)
OPE〉, c[β ]

and the two parameters related to q̂2-dependent lattice artefacts – were fitted in the interval of q̂2 indicated
by the vertical dashed lines. The left panel shows the VPF after subtraction of the constant terms c. The
result of the combined fit is shown by the coloured bands. The band labelled by “OPE C.L.” refers to the
continuum limit curve derived from the fit. The right panel shows the difference, ∆Π = Πlat.−Πfit, of the
lattice data and the fit result. The data points refer to the case where Πfit involves the complete fit ansatz
where discretisation effects are included. The difference between the data points and the coloured bands
denotes the size of q̂2-dependent lattice artefacts.

the continuum limit. However, we stress that a weak quark-mass dependence is observed in this
high-energy regime (see fig. 1(a)).

The continuum limit scaling of D(q̂2
ref) is shown in fig. 1(b). Our data from three values of

the lattice spacing is not accurate enough to clearly discriminate among O(a) and O(a2) lattice
artefacts. The estimate of D(q̂2

ref) from a phenomenological model [12] is shown as a qualitative
comparison (we recall that the continuum limit scaling has currently been performed at unphysical
pion masses). Further investigations of the Adler function in this lattice setup [13, 14] and of
lattice artefacts in the Ward identity of the vacuum polarisation tensor [13] were reported at this
conference. As expected, discretisation effects in the Adler function are observed [13] to diminish
for smaller values of q̂2.

In matching the lattice VPF to its OPE expression in eq. (2.4) we augment the fit ansatz
to include two terms parametrising discretisation effects of O((aq̂)2) and O(a2 log(q̂2)). With
such an expression we perform a fit combining the VPF data from three values of β . The fit
parameters are Λ

(Nf=2)
MS

, 〈O(4)
OPE〉, c[β ] and the two parameters related to q̂2-dependent lattice arte-

facts. In defining the RGI product, m f 〈ψ f ψ f 〉, we use as input the value of the chiral condensate,
〈ψ̄uψu〉 = −(0.270(7)GeV3), reported by FLAG [11]. Uncorrelated fits with loose priors on c[β ]
and 〈O(4)

OPE〉 are considered. We refer to refs. [8 – 10] for earlier studies of the matching of the lattice
VPF to the OPE.

An example of a combined fit of the lattice VPF from ensembles N6, E5 and A5 (see table 1) is
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Figure 3: Comparison of combined fits of the lattice VPF to the OPE expression in eq. (2.4) – supplemented
with terms of O((aq̂)2) and O(a2 log(q̂2)) – for different choices of the q̂2 range employed in the fit. The
ensembles N6, E5 and A5, with lattices spacings ranging from a ≈ 0.05 to 0.09 fm, were considered. In
the upper panel, the vertical size of the bars indicates the q̂2 interval used in the fit. The middle and lower
panels display the corresponding values of the fit parameters, c[β = 5.5] and Λ

(Nf=2)
MS

, respectively. For the

latter case, the Nf = 2 result [2] from the ALPHA collaboration, Λ
(Nf=2)
MS

= 310(20)MeV, is indicated by the
horizontal band.

shown in fig. 2. The fit uses the OPE expression in eq. (2.4) supplemented with terms parametrising
lattice artefacts. Concerning q̂2-dependent cutoff effects, fig. 2 confirms the expectations based on
the continuum-limit scaling of the Adler function. Indeed, a proper analysis of lattice artefacts is
particularly important in the large q̂2 regime. We note in passing that results similar to those in
fig. 2 are found in a fit where Λ

(Nf=2)
MS

is fixed to 310(20)MeV [2].
The dependence of the fit parameters on the choice of the q̂2 interval is illustrated in fig. 3.

While the constants c[β ] appear to be fairly insensitive to the fit interval, we observe that the
central value of Λ

(Nf=2)
MS

does depend on the q̂2 range although within rather large uncertainties. On

the other hand, given the current accuracy, we do not observe a significant dependence of Λ
(2)
MS

on
the light-quark mass.

Further studies will be carried out to properly address the systematic effects present in this
analysis. In particular, we will consider variations on the terms describing the lattice artefacts and
their interplay with the other fit parameters.

Conclusions

We have performed a preliminary study of the matching of the lattice VPF to the OPE ex-
pression up to order 1/q4. In the large q2 regime where the perturbative expansion is valid, the
lattice data tends to suffer from large discretisation effects. Fits including terms parametrising the
q̂2-dependent lattice artefacts confirm the necessity of a proper analysis of the approach to the con-
tinuum limit when considering lattice spacings in the region, a ≈ 0.05 to 0.09 fm. We observe a
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dependence of the extracted values of the Λ
(Nf=2)
MS

parameter on the choice of the q2-interval con-

sidered in the fits. However, the statistical uncertainty on the extracted values of Λ
(Nf=2)
MS

also tends
to be rather large.

As an extension to this work, we plan to subtract from the lattice data the leading discretisation
effects computed in lattice perturbation theory. Moreover, variations of the combined fits regarding
the treatment of the lattice spacing and quark mass dependence will be considered together with an
analysis of the effect of the scale setting procedure on the extracted values of Λ

(Nf=2)
MS

.
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