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1. Introduction

Lattice QCD allows for the determination of nucleon structure quantities such as the axial
charge, gA, which is well known experimentally from neutron beta decay and which can be deter-
mined on the lattice without any extrapolation in the momentum transfer, making it an important
benchmark quantity for lattice QCD. For an accurate determination of gA, it is important to take
excited-state contributions into account. In this context, a particular difficulty arises when fully
correlated fits become unstable; here, we explore possible cures to this problem.

To extract the nucleon axial charge, we use a spatial component of the isovector axial current,
Ak(x). We proceed by taking a ratio of correlation functions,

R(t, ts) =
C3(~0, t, ts)

C2(~0, ts)
, (1.1)

where C2(~q, ts), C3(~q, t, ts) are two- and three-point functions, respectively:

C2(~q, ts) = ∑
~x
〈Γα ′αJα(~x, ts)J̄α ′(0)〉e−i~q·~x, (1.2)

C3(~q, t, ts) = ∑
~x,~y
〈Γα ′αJα(~x, ts)Ak(~y, t)J̄α ′(0)〉e−i~q·~y. (1.3)

The interpolating operator J̄α(x) is chosen to have the correct quantum numbers in order to produce
a nucleon, and Γα ′α is a projection matrix, which is used to ensure the correct parity of the created
nucleon. In the correlation functions, ts denotes the Euclidean time separation between the source
and the sink, and t is the Euclidean time separation from the source to the axial current insertion
point. From the imaginary part of this ratio, the nucleon axial charge can be extracted as

Im[R(t, ts)]
ts,t→∞
= gbare

A . (1.4)

Taking the contribution from the first excited state to C3(t, ts) and C2(ts) into account [1, 2], the
asymptotic behavior of the ratio can be expressed as

R(t, ts) = gbare
A + c1 e−∆t + c2 e−∆(ts−t)+ c3 e−∆ts + . . . , (ts, t→ ∞) (1.5)

where the energy gap, ∆, is the energy difference between the ground and the first excited state
carrying the same quantum numbers as the nucleon at rest. In principle, the energy gap can be
extracted from the two-point correlation function; however, we have found the extraction to be
difficult with the data available to us. In some of the fits described below, we therefore choose the
approximation ∆ = 2mπ .

To test the various methods for extracting the axial charge, we use one ensemble with two
dynamical flavours of O(a) improved Wilson fermions. The most relevant parameters of this en-
semble are displayed in Table 1. This ensemble was generated as part of the CLS initiative, in
which the deflation-accelerated DD-HMC algorithm [3, 4] was used. A total of 600 measurements
were performed by using four sources (equally spaced in the temporal direction) on each of 150
highly decorrelated configurations. Gaussian smearing [5] supplemented by APE-smeared links
[6] was used to suppress excited-state contaminations. For some earlier analyses of the nucleon
axial charge, as well as the electromagnetic form factors of the nucleon, on the CLS ensembles
see [7, 8].
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Label volume ts β a[fm] amπ Ncfg Nsrc

N4 96×483 13, 16, 19, 22 5.5 0.050 0.1358(3) 150 4

Table 1: Details of the lattice ensemble used in this calculation, including lattice volume, source-sink sep-
arations ts used, coupling constant β , lattice spacing a, pion mass mπ , and numbers of configurations Ncfg

and sources Nsrc used.

2. Comparing different fitting strategies

2.1 Excited-state fits

The most straightforward way of incorporating the effects of excited states into an extraction
of gbare

A is to fit the measured R(t, ts) to Eq. (1.5) over a range of different t and ts simultaneously.
Because the values of R(t, ts) at different t and ts are statistically correlated, it is desirable to perform
a fully correlated fit to all data. Computing the correlated χ2 requires inverting the covariance
matrix K of the data. With a limited number N of samples, it may be unrealistic to estimate the
inverse of the full M×M covariance matrix, where M is the number of different (t,ts) combinations.
In particular for the case that N is not very large, the estimated χ2 may be unreliable as a goodness-
of-fit estimator [9].

In our correlated excited-state fits, more than M = 50 different (t, ts) combinations were fitted
with N = 150 pre-binned data samples. Since many elements of the covariance matrix are poorly
determined, these fits suffer from instabilities and may not describe the central values of the data
particularly well (cf. the left panel of Fig. 1 for an example). To avoid these instabilities, we
have attempted the following procedure. We diagonalized the covariance matrix and computed the
standard deviation of the eigenvalues, which requires considering jackknife samples within each
jackknife sample. Each eigenvalue was replaced by the larger of its central value and three times its
standard deviation to form a modified matrix K̃, which has the same eigenvectors as K but some of
whose eigenvalues are larger. Using K̃ instead of K is a conservative procedure, since vTK̃v≥ vTKv
for all v, and amounts to increasing the error bar of some linear combinations of the data points by
an amount which is formally of order N−1/2. We expect that K̃−1 should be a more stable estimator
of the inverse of the covariance matrix than K−1. However, performing the correlated fit with this
estimator, we still observe a counterintuitive behavior similar to the one observed in the left panel
of Fig. 1. Although this deserves further investigation, it appears that the poor description of the
data is not exclusively associated with the smallest eigenvalues.

A pragmatic way to proceed is to perform more physics-motivated approximations to the co-
variance matrix. As is well-known, the entries of the covariance matrix of primary observables such
as C2 and C3 can be interpreted as correlation functions in the considered ensemble [9]. For the
nucleon two-point function, it is easy to see that for large times t and t ′, the off-diagonal elements
of K are suppressed by a factor exp(−|t− t ′|(2mN −3mπ)). Motivated by this observation, we in-
troduce the “block-correlated fit”, which neglects the correlations between data points at different
values of ts, which we expect to be smaller and less well-determined than those between points at
the same value of ts. In other words, we approximate the covariance matrix with a block-diagonal
matrix by setting its elements K(t, ts; t ′, t ′s) relating data points with ts 6= t ′s to zero, while keeping
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Figure 1: The unrenormalized ratio R(t, ts) and fits for ts/a= 13,16,19,22. Left: fully correlated fits. Right:
block-correlated fits, where the correlations between points with different ts are neglected.

all other elements unchanged. From the example shown in Fig. 1, it can be seen that this helps to
stabilize the fit and to improve the description of the data (cf. also Table 2).

2.2 The summation method

An alternative method to extract gbare
A , which avoids the need to perform fits to large number

of data points, is the use of summed operator insertions, for which the leading asymptotic approxi-
mation is given by [10]

S(ts) =
ts−tcut

∑
t=tcut

R(t, ts)
ts→∞−→ gbare

A x+C, x(ts) = ts +1−2tcut. (2.1)

We have allowed for the possibility of reducing the effect of higher excited states by dropping
the data points with a distance of less than tcut from the source or sink in a symmetrical fashion,
allowing us to determine gbare

A , as well as the excited-state parameter C, from a simple straight-
line fit. In the simplest version of this method, the O(e−∆ts) contribution is ignored. A more
sophisticated version of the summation method is obtained if we rewrite the summed ratio without
neglecting the O(e−∆ts) contributions,

S(ts) = x(gbare
A +Be−∆x)+C(1− e−∆x), (2.2)

where an additional parameter B has to be determined. Fig. 2 shows a comparison between the
fits obtained using Eq. (2.1) (“standard summation method”) and those including the excited state
contribution in Eq. (2.2) (“extended summation method”). It can be seen that the slope obtained
from the standard summation method is dominated by the data points at the smallest values of
ts, which have the smallest statistical errors, whereas the extended summation method is able to
describe the steeper slope suggested by the (statistically less precise) data points at the largest
values of ts (see also Table 2).
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Figure 2: Summation method; the bare axial charge is given by the slope. Left: standard summation method;
the summed ratios are fitted with Eq. (2.1) as a straight line. Right: extended summation method; the fit is
to Eq. (2.2) with higher-order excited-state contributions included.

2.3 The midpoint method

For 0� t � ts, the term of O(e−∆ts) in Eq. (1.5) is parametrically small relative to the other
corrections. To minimize the t-dependent corrections, we can consider the point at t = ts/2, for
which both are O(e−∆

ts
2 ). We assume that in the extraction of gbare

A the excited state coefficients c1

and c2 in Eq. (1.5) are approximately identical, as suggested by the symmetric shape of the data.
It is therefore an acceptable approximation to consider only the data point M(ts)=R(t = ts

2 , ts), or
M(ts)=R(t = ts±1

2 , ts) if ts is odd (“midpoint method”), and parameterize it by combining these two
contributions

M(ts) = gbare
A +Ax(ts), x(ts) =

{
e−∆

ts
2 cosh(∆

2 ) ts is odd,

e−∆
ts
2 ts is even.

(2.3)

This method then allows us to extract gbare
A as the y-axis intercept in a simple straight-line fit to

M(ts) as a function of x(ts). To allow for a comparison between this fit and the standard summation
method, we rewrite the summed ratio by dividing both sides of Eq. (2.1) by x = ts +1−2 tcut,

S(ts)
x

= gbare
A +

C
x
, (2.4)

and present the fit results in Table 2 and Fig. 3.

3. Conclusions and outlook

As each of the fitting strategies introduced in the preceding section has its own systematic er-
rors, we attempt to obtain a handle on the systematic errors arising from excited state contributions
by extracting gbare

A using each of the fit strategies and and comparing the results, which are listed in
Table 2. The value of gA given in the table has been renormalized with the renormalization constant
ZA = 0.8007(96) from [11].

From the table we see that several of the different strategies differ by more than their respective
statistical errors, indicating that there may be some residual systematic errors from excited-state
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Figure 3: Comparison of summation and “midpoint” methods; the axial charge is given by the intercept.
Left: an alternative way to represent the standard summation method using Eq. (2.4). Right: the “midpoints”
fit of Eq. (2.3), where at each ts only the data point at t = ts/2 is considered.

Fitting method Npar gA excited contamination χ2
red

fully correlated excited-state fit c1 =−0.041(12)
Fig. 1 left, Eq. (1.5) 1+3 1.097(6) c2 =−0.034(6) 2.247

c3 =−0.595(185)
“block correlated” excited-state fit c1 =−0.074(18)

Fig. 1 right, Eq. (1.5) 1+3 1.140(13) c2 =−0.064(13) 1.385
c3 =−1.090(325)

summation (standard) 1+1 1.171(21) C =−0.747(148) 0.076
Fig. 2 left, Eq. (2.1)

summation (extended) 1+2 1.275(69) B = 2.5(2.0) 0.017
Fig. 2 right, Eq. (2.2) C =−5.2(2.2)

midpoint 1+1 1.189(24) A =−0.314(64) 1.150
Fig. 3 right, Eq. (2.3)

Table 2: Comparison of all methods for the extraction of gA. Npar is the number of fit parameters (gA and
the excited-state contaminations listed in the third column).

contaminations. The range of independent methods at our disposal suggests that we could perform
the same range of analyses on a set of lattice ensembles and combine each of the fitting strategies
with a range of chiral and continuum extrapolations to estimate the systematic error using a pseudo-
bootstrap method [12].

We have studied a range of different fitting strategies to extract the axial charge of the nucleon
from ratios of correlation functions. While fully correlated fits for the nucleon axial charge tend to
become unstable, a “block-correlated fit” can help stabilize the simultaneous excited state fits, while
taking into account the dominant correlations in the data. The “midpoint” method provides a viable
alternative to the standard summation method, with the advantage that the required extrapolation
is much shorter (cf. Fig. 3). Therefore the result of the extrapolation is almost identical to the data
point at the largest ts, rendering the result much less sensitive to the point at the smallest ts. On the
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other hand, the “standard summation method”, has the advantage of not requiring any particular
assumption about the value of the energy gap ∆; the contribution proportional to B in Eq. (2.2) only
needs to be small enough to neglect.

Further investigations using other ensembles with different lattice spacings and pion masses,
and different sets of source-sink separations, are necessary for a more complete picture. Further-
more, ensembles with increased statistics can provide more reliable data that should allow for more
stable fits with a more accurately known covariance matrix.
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