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Monte Carlo simulations are possible at arbitrary µ . We use the results from the dual simulation
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1. Introduction

Lattice QCD at non-zero chemical potential µ suffers from the complex action problem which
makes finite density lattice QCD inaccessible to conventional Monte Carlo techniques. An alter-
native strategy that has been explored are expansions around the µ = 0 theory using, e.g., Taylor-
or fugacity series. In this contribution we study fugacity expansion, Taylor series and a modified
Taylor series in a QCD related model, referred to as the effective center model [1, 2]. The effective
center model is an effective theory for the dynamics of the Polyakov loops [3] and contains a center
symmetric interaction between two Z3-valued Polyakov spins on nearest neighbors and the leading
center symmetry breaking term from the fermion determinant, which also couples to the chemical
potential. The effective center model can be mapped exactly to a dual representation where the
complex action problem is solved and reliable Monte Carlo simulations are possible for arbitrary
µ . We use the results from the dual representation as reference data to assess the reliability and
convergence region of the three series we study.

The Z3 effective model may be derived from full QCD using a strong coupling approximation
for the gluon action and a hopping expansion for the fermion determinant. Moreover, exploring the
Svetitsky-Yaffe conjecture [3], the degrees of freedom are reduced to elements of the center group
Z3. The action of the Z3 effective model reads

Sµ = −∑
x

[
τ

3

∑
ν=1

[
PxP∗x+ν̂

+ c.c.
]
+ηPx + η̄P∗x

]
, (1.1)

where the Px are elements of Z3 =
{

1,e±2iπ/3
}

. The first sum runs over all sites x of a N3 lattice
with periodic boundary conditions and ν̂ denotes the unit vector in ν-direction. The chemical
potential µ enters through η = κeµ , η̄ = κe−µ . The parameter τ is increasing with temperature,
whereas κ is increasing with decreasing QCD quark mass and is proportional to the number of
flavors. The partition function is obtained as a sum over all configurations {P} of the variables,
Z = ∑{P} e−Sµ . In this study we focus on the expectation value 〈P〉= V−1〈∑x Px〉= V−1∂ lnZ/∂η

of the Polyakov loop and the corresponding Polyakov loop susceptibility as our main observables.
It is obvious that in the standard representation the action (1.1) is complex for µ 6= 0 and

conventional Monte Carlo techniques fail. The exact transformation to a flux representation solves
the complex action problem for this model and allows for the application of Monte Carlo techniques
at arbitrary µ . In [2] the phase diagram in the µ-τ plane was mapped out and we use the results
from that study as reference data for the analysis of our series expansions.

For later use in the discussion of our results for the various series expansions, in Fig. 1 we
assess the severity of the complex action problem by studying the phase eiφ of the Boltzmann
factor in the phase quenched theory. We show plots of

〈
ei2φ
〉

p.q.
as a function of µ for κ = 0.001

(lhs. plot) and κ = 0.01 (rhs.) on 163 lattices for different values of τ .
From Fig. 1 it can be seen, that for higher values of κ (corresponding to smaller particle

mass) the complex action problem is already severe at smaller values of the chemical potential and
that smaller temperatures are more affected. Since τcrit shifts to smaller values of the temperature τ

when the chemical potential is increased, this fact complicates the exploration of the phase diagram
when using series expansion methods.
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Figure 1:
〈
ei2φ
〉

p.q.
versus µ in the phase quenched theory for κ = 0.001 (lhs. plot) and κ = 0.01 (rhs.) on

163 lattices for different values of τ . The smaller τ , the further left is the corresponding curve. Note the
different scale on the horizontal axes of the two plots.

2. Fugacity expansion of the partition function

We begin our study with the fugacity expansion

Z = ∑
q∈Z

eµq Zq , (2.1)

where the sum runs over all net particle numbers q. The canonical partition sums Zq are given by

Zq = ∑
{P}

eτ ∑x,ν [PxP∗x+ν+c.c.] Dq , (2.2)

where the Dq are the analogues of the canonical determinants of QCD, i.e., the fermion determinant
projected to a fixed quark number sector. As the canonical determinants in QCD [4], the Dq can
be computed as Fourier transforms with respect to imaginary chemical potential and are given by
( H ≡ ∑x Px = Reiθ )

Dq =
1

2π

∫
π

−π

dϕ e−iϕ q exp
(
κeiϕH +κe−iϕH∗

)
= eiθ qIq (2κR) , (2.3)

where Iq denotes the modified Bessel functions.
We begin our analysis of the properties of the fugacity expansion by inspecting the modulus

of the coefficients Dq as a function of q. It is obvious that the Dq must decrease with increasing
q, such that the fugacity series (2.1) converges. In a practical implementation the fugacity series
must be truncated to values q of the particle number in some interval with a lower and an upper
bound, i.e., ql ≤ q≤ qu. The analysis of the size distribution of the Dq is necessary for obtaining a
reasonable estimate for ql and qu.

In the lhs. plot of Fig. 2 we show the expectation value 〈|Dq|/D0〉 versus q at κ = 0.001
(µ = 0) for different values of τ on 163 lattices. The distribution has a Gaussian-like shape, with
the width of the distribution increasing with the temperature parameter τ . This behavior is to be
expected, since the width of the distribution is related to the particle number susceptibility which
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Figure 2: Distribution of the coefficients in the fugacity series. In the lhs. plot we show 〈|Dq|/D0〉 versus
q at κ = 0.001,µ = 0 for 163 lattices for different values of temperature parameter τ (width of distribution
increases with τ). On the rhs. we show 〈|eµqDq|/D0〉 for κ = 0.001,τ = 0.183,163 for different values of µ .

increases with τ . The analysis shows that on the 163 lattices for all values of τ we consider, the
main contributions to the µ = 0 fugacity series are taken into account for ql =−10, qu = +10.

The chemical potential enters the fugacity series via the factor eµq, shifting the Dq that con-
tribute to the fugacity expansion towards larger values of q. This is evident from the rhs. plot in
Fig. 2, where we show 〈|eµqDq|/D0〉 versus q for κ = 0.001,τ = 0.183 for different values of µ .
For the range of chemical potential values considered here a reasonable choice for the truncated
series would be ql =−5, qu = +20.

Of course the analysis in Fig. 2 is only of a qualitative nature and is presented here to illustrate
the effects of the interplay between the chemical potential and the size distribution of the |Dq|. The
optimal truncation parameters ql and qu were determined by systematically studying the relative
error between the exact expression and the truncated series as a function of ql and qu.

A detailed comparison of the fugacity expansion results for physical observables to our refer-
ence data from the dual representation will be presented in Section 5. However, we already remark
now that for most of the parameter values studied here, the fugacity expansion results agree very
well with the reference curves.

3. Regular Taylor expansion (RTE) in the effective Z3 model

The observables we consider here can be obtained as derivatives of the logarithm of the par-
tition function. This logarithm now is Taylor-expanded in µ and derivatives at µ = 0 are the
coefficients of the resulting series (which of course is truncated in an actual application),

lnZ =
∞

∑
n=0

µn

n!

(
∂

∂ µ

)n

lnZ
∣∣∣∣
µ=0

. (3.1)

In Fig. 3 we compare the Taylor expansion results up to third order in µ for the Polyakov loop
susceptibility to the results obtained in terms of dual variables. We use 163 lattices at κ = 0.001,
µ = 0.4 (lhs. plot) and µ = 1.0 (rhs.) for a statistics of 106 configurations. The plot demonstrates
that in general the Taylor series reproduces the dual results better for the smaller values of the

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
4
8

Taylor- and fugacity expansion for the effective center model of QCD at finite density Eva Grünwald

0.18 0.1805 0.181 0.1815 0.182 0.1825 0.183
τ

0

50

100

150

χ
P
/V

Dual Variables

RTE O(µ
0
)

RTE O(µ
1
)

RTE O(µ
2
)

RTE O(µ
3
)

µ = 0.40

0.18 0.1805 0.181 0.1815 0.182 0.1825 0.183

τ

0

50

100

150

200

µ = 1.00

Figure 3: Polyakov loop susceptibility obtained from the regular Taylor expansion for κ = 0.001, µ = 0.4
(lhs. plot) and µ = 1.0 (rhs.) as a function of the temperature. Results up to third order in µ are shown and
are compared to flux representation results on a 163 lattice.

temperature parameter τ . At a chemical potential of 0.4 we can achieve quite good agreement
with the dual results for the whole τ range when we include all terms up to O(µ3). For µ = 1.0,
however, it is obvious that the Taylor series up to O(µ3) fails to reproduce our reference data except
for the smallest values of τ .

4. Improved Taylor expansion (ITE) in the effective Z3 spin model

We now consider a second type of Taylor series, which we refer to as the ”improved Taylor
expansion”, where the logarithm of the partition sum is expanded in the parameters ρ = κ (eµ −1)
and ρ̄ = κ (e−µ −1) (which in the limit µ → 0 corresponds to an expansion in µ). A part of
the motivation for this type of expansion is to capture some of the features of the fugacity expan-
sion, which in the case of QCD would lead to a finite Laurent series, whereas the regular Taylor
expansion gives rise to an infinite series. For the ITE the Boltzmann factor is organized as follows,

e−Sµ = e−S0 eρH+ρ̄H∗ , (4.1)

where Sµ is the action as given in (1.1) and S0 its form when µ = 0. When expanding the second
factor on the rhs. one may express the partition sum Z(µ) at non-zero µ in the following series,

Z(µ) = Z(0)
[

1+ 〈ρH + ρ̄H〉0 +
1
2

〈
(ρH + ρ̄H)2

〉
0
+

1
6

〈
(ρH + ρ̄H)3

〉
0
+O

(
ρ

4)] . (4.2)

The individual terms are expectation values 〈..〉0 evaluated in the µ = 0 theory. They have a
structure different from the terms in the regular Taylor series but their evaluation in full QCD has
the same numerical cost as the coefficients of the RTE. The logarithm of the partition function for
the evaluation of observables is obtained by further Taylor expansion in ρ and ρ̄ and observables
by subsequent derivatives.

Figure 4 shows the Polyakov loop susceptibility at κ = 0.001 as a function of the temperature
for two values of µ and again we compare the series for orders up to O(ρ3) to the results from the
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Figure 4: Polyakov loop susceptibility obtained from the improved Taylor expansion for κ = 0.001 as a
function of the temperature. Results up to third order of ρ are shown and are compared to flux representation
results on a 163 lattice from 106 measurements.

dual simulation. In the case of µ = 0.4 (lhs. plot), the ITE produces reliable outcome for all values
of τ , while at µ = 1.0 the ITE up to third order of ρ starts to deviate from the dual variable data at
τ ∼ 0.1812.

5. Direct comparison of all three expansion techniques

In Fig. 5 we systematically compare fugacity-, improved- and regular Taylor expansion (both
up to 3-rd order) to results from flux representation for six values of µ at κ = 0.01. Dual variable
data is from 106 measurements, whereas fugacity and Taylor expansion need 4 ·107 configurations
to produce reasonable data at µ ≥ 1.0. The RTE fails to converge already near µ = 0.6, whereas
the ITE produces reliable outcome up to µ = 0.8. The fugacity expansion reproduces the results of
the dual variables quite well, until the complex action problem becomes very severe at µ = 1.2.

6. Summary

In the work reported here, we compared fugacity-, regular Taylor- and improved Taylor-
expansion concerning their reliability in reproducing the phase diagram of the effective center
model [1, 2]. As reference data we used results from a simulation in the dual representation [2]
where the complex action problem is overcome for arbitrary values of µ . It turned out, that the loss
of convergence of the fugacity expansion coincides with the range of chemical potential where the
complex action problem becomes very severe (Fig.1). For small values of κ , e.g. κ = 0.001, this
leaves a relatively wide range of µ-values that can be explored reliably with the fugacity expansion.
In comparison to that, the Taylor expansion methods are valid for only quite small values of the
chemical potential, where the ITE outperformed the RTE. None of the three expansion methods can
reproduce the phase diagram of the effective center model to full extent. However, the assessment
of their limitations in a comparison to the reliable reference data from the dual approach can be
used to improve these series expansion techniques for QCD applications.
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Figure 5: Comparison of the Polyakov loop susceptibility at κ = 0.01 and lattice size 163 for fugacity, RTE
and ITE expansions to results from a dual simulation for six values of the chemical potential µ .
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