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We study scaling behavior of a chiral order parameter in the low density region, performing a
simulation of two-flavor QCD with improved Wilson quarks. The scaling behavior of the chiral
order parameter defined by a Ward-Takahashi identity agrees with the scaling function of the
three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to
finite density QCD. Applying the reweighting method and calculating derivatives of the chiral
order parameter with respect to the chemical potential, the scaling properties of the chiral phase
transition are discussed in the low density region. We moreover calculate the curvature of the
phase boundary of the chiral phase transition in the temperature and chemical potential plane
assuming the O(4) scaling relation.
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1. Introduction

Many interesting properties of finite temperature and density QCD have been uncovered by
lattice simulations. However, there are still many open problems even at low density. The nature
of the chiral phase transition in the chiral limit of 2-flavor QCD is one of them. The standard
expectation, assuming then(1) symmetry remains violated also in the high temperature phase, is
that the chiral phase transition in 2-flavor QCD is of second order in the chiralrdinit 0 and
crossover formg # 0, and it changes to first order when the chemical poteptjas sufficiently
large. In this case, the scaling property around the second order transition is universal to that of
the 3-dimensional O(4) spin model. We illustrate the conjecture infFgr 2-flavor QCD with
myq = 0 andmg # 0. Because the QCD action has the chiral symmetry in the chiral limit even at
Hq # 0, we expect the same critical properties in the low density redipn [

The O(4) scaling behavior in QCD was first reported for the case of Wilson-type quark actions
at g = 0. Both with the standard Wilson quark acti@ fnd with the clover-improved Wilson
guark action[@], a subtracted chiral condensate is shown to follow the scaling behavior with the
critical exponents and scaling function of the O(4) spin model in a rather wide range of the param-
eter space. Studies using improved staggered quark actions have also shown that, adopting several
definitions for the renormalized chiral condensate, the chiral scaling is consistent with O(4) and
0O(2) with very light u,d quark masses and the physical strange pakHjough the universality
is not guaranteed due to the explicit violation of locality due to the forth-root trick. On the other
hand, it was recently argued that the (@) symmetry may be effectively recovered in the high
temperature phasg][ This suggests that the chiral condensate does not follow the O(4) scaling.
Hence, it is worth revisiting the scaling study both at zero and finite densities.

In this report, we study the scaling behavior near the chiral phase transition in the low density
region of 2-flavor QCD. To avoid theoretical uncertainties with the forth-root trick, we adopt im-
proved Wilson quarks. General argument of the O(4) scalipg &0 is given in Sedd Numerical
results of the scaling tests are presented inBaad4 A conclusion is given in Sefl

2. Scaling behavior of chiral order parameter at finite density

The order parameter in the O(4) spin model is given by the magnetizetidn the vicinity
of the second order transition poii, satisfies the following scaling relation:

M/hY% = f(t /h'/Y), (2.1)

whereh is the external magnetic fieldlis the reduced temperatute= (T — T¢|h—0)/Tc|n=0, and
f(x) is the scaling function. In the O(4) spin model, the critical exponents are=11/(39) =

0.546 and ¥6 = 0.20734) [6. In 2-flavor QCD, the scaling variablell, t andh, may be identi-
fied [ as

Hq

2
T), h=2mga, 2.2)

M= (@g), t=B— Bty (

respectively, wher@ is the critical point of3 = 6/g° at Hgq = 0 in the chiral limit,a is the lattice
spacing, ana is the curvature of the critical line in thg8, 1q/T) plane,c = —d?Be/d(g/T)?,



_SI_,CSIing roperties of the chiral phase transition in the low density region of two-flavor QCD with ...
. Umeda

B K T/Tpe Conf. mps/my
1.50 0.150290 0.82(3) 2500 0.678(R)
1.60 0.150030 0.86(3) 2500 0.663(R)
1.70 0.148086 0.94(3) 2500 0.659(R)

| 2order 1.75 0.146763 1.00(4) 2500 0.662(B)
! m critical point 1.80 0.145127 1.07(4) 2500 0.657(b)
1.85 0.143502 1.18(4) 500 0.652(4)
190 0.141849 1.32(5) 500 0.648(4)
195 0.140472 1.48(5) 500 0.657(4)
150 0.143480 0.76(4) 2550 0.820(1)
1.60 0.143749 0.80(4) 2600 0.809(L)
1.70 0.142871 0.84(4) 2600 0.804(fL)
W 1.80 0.141139 0.93(5) 2600 0.800(R)

_ d 1.85 0.140070 0.99(5) 600 0.794(2)
Figure 1: Speculated phase structure of 2-flavor 1 99 (138817 1.08(5) 600 0.796(2)
QCD at finite temperature and density. The red line 1 g5 137716 1.20(6) 600 0.802(R)
is the second order transition line fwg = 0 and the

blue lines are the first order transition lines.

guark-gluon plasma phase

hadron phase

Table 1: Simulation parameters.

since But(Hg) = Bet(0) — ¢(g/T)?/2 on the critical curvet = 0). Here,h does not have @i
dependent term at low density. Because the critical line is expected to run alamg+h@ axis in
the low density region of thémy, g/ T) plane,h =0 atmy = 0.

We compare the scaling functions of 2-flavor QCD and the O(4) spin model in the vicinity
of ug = 0. Although a direct simulation of lattice QCD is difficult g # 0 due to the complex
weight problem, the reweighting method is applicable at spralln this note, we study the scaling
property of the second derivative of the chiral order parameter,

d’m dM dM/dt _df(x)

(/TP |, dt|, o My dx

Assuming these scaling relations, the coefficienbrresponds to the curvature of the critical line
at g = 0 in the chiral limit.

Here, a careful treatment is required because the chiral symmetry is explicitly broken with
Wilson quarks at finitea. In Ref. [2 [3], it was shown that the O(4) scaling of E@.J) is well
satisfied when one defines the quark maga and the chiral order parametépy) by Ward-
Takahashi identitie$f]. mya can be defined by

(2.3)

Hig=0 Hg=0 x=t /ht/y

2mga = —mps (Aq(t)P(0)) / (P(1)P(0)), (2.4)

whereP andA,; are the pseudo-scalar and axial-vector meson operators, respectivelg, the
pseudo-scalar meson mass, and the bar means the spatial average. Sighifarig given by

_ . 2mga n_ 2mga(2K)? IR
= PX)P(X)) = ——=——(tr (D" "wD . 2.5
(74) = R 2, POOPO)) = =g (D0 ) (25)
Here,D is the quark matrixK is the hopping parameter, ait x N, is the number of sites. The
quark mass and the chiral condensate satisfy the Ward-Takahashi identity in the continuum limit:
(OuAL(X)P(X)) — 2mga(P(X)P(X)) = d(x— X) (). We adopt these definitions of quark mass
and chiral order parameter in this study.
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3. Chiral order parameter at finite density

We perform simulations of 2-flavor QCD at finite temperature gpe- 0 on a 16 x 4 lattice
and combined them with configurations obtained in RE49]. The RG-improved gauge action
and the 2-flavor clover-improved Wilson quark action are adopted. The measurements are done
every 10 trajectories and 500 — 2600 configurations are used for the analysis at each simulation
point. The simulation parameters are summarized in Tébl€he quark massya is computed
performing zero temperature simulations on & @4 lattice at each simulation point listed in
Tablelll The number of configurations used for the measurement is 378 — 589. The pseudo-scalar
to vector meson mass ratioBt= 0 is aboutmps/my ~ 0.65 or 080, as shown in Tab@

We use the random noise method to calculgtey). As we have emphasized in R [it is
important to apply the noise method only for the space index and to solve the inverse exactly for
the spin and color indices without applying the noise method to obtain reliable results. We choose
100 — 150 as the number of noise vectors for each color and spin indices.

3.1 Reweighting method for the chiral order parameter

We use the reweighting method to calculéfep) at finite pq,
(2K)2<tr(D_1ygD_1VS)>g~uq = (2K)2% / 2U tr(D 1D i) (detD)Ne S

(ZK)Z <'[I‘ (DflystlVS) (IJq)eNf(IndetD(uq)fIndetD(O))>

B0
(WndeD () -nd=D0)) ,(3.1)

)

whereNs = 2. Because the reweighting method is applicable only for smallwe evaluate
IndetM(pq) and t{D~1ysD~1ys) by a Taylor expansion up 1@(;15), as proposed on Refl{l,

2
Nr(IndetD (g) — IndetD(0)) = piga2s + (““Za) 2,+0(d),
1 1 a)?
(2K)%tr (D 1D 1) (Lg) = (2K)?tr (D~ 1ysD1y6) (0) + pga1 + (“qz) %2 +0(1g). (3.2)
where2,, and%;, are defined by
0" IndetD 0" (DD )
Qn - Nfd(Tqa)nv %n - (ZK) a(uqa)n (33)

These derivative operators can be calculated by the random noise method.

We plot the results of the chiral condensate in Rdor pg/T < 1, constructing the form of
M/h'/% = f(t/h*/¥) with the identification of EqZ2). The large symbols are the datgiat= 0.
The results at finitg, are lines with their error bars connected with the sides of the symbols. The
critical exponents of the O(4) spin model are used. The black line is the scaling function obtained
by the O(4) spin model in Refld. We adjust four fit parameters in this analysis. One is the
critical value B at g = 0, the second is the curvature of the phase boundary irighgq/T)
planec, and the others are used for adjusting the scales of the horizontal and vertical-axes to the
scaling function of the O(4) spin model. We determine the four parameters such that the square of
the deviation between the simulation data and the scaling curve is minimized. The best value of
Be: and the curvature afg;; = 1.510 andc = 0.0290. This scaling plot indicates that the scaling
function of 2-flavor QCD is consistent with that of the O(4) spin model, numerically.
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Figure 2: O(4) scaling plot of the chiral order pa-Figure 3: O(4) scaling plot of the second deriva-
rameter in 2-flavor QCD. tive of the chiral order parameter by method 1.

3.2 Derivatives of the chiral order parameter atpg =0

We calculate the second derivative(gfy) performing numerical simulations of 2-flavor QCD
(Nf = 2) at g = 0 and compare it with the O(4) scaling function HZ.3). We then determine the
curvature of the criticgB in the chiral limit, assuming the O(4) scaling behavior is satisfied.

Method 1: Fitting the data by the reweighting method at finite i;  We fit the data of the chiral
order parameter at finitgq by

(P) (Ug) = X+Y(Hg/T)?, (3.4)

wherex andy are the fit parameters. The first derivative is zero due to the symme&fry: — g
We identify the parameters as follows,

n 1 d*(Jy)

=) 0. Y= 550m2© (3.5)
We then obtain the second derivative and plot it in Bgwith the form of Eq. 2.3 adopting
Bet = 1.510. The corresponding scaling functicth§/dx are shown by the colored lines for=
0.02,0.03,0.04 and 005, from the bottomi@|. The fit range is adopted to heg/T < 1. The results
change with the choice of fit range, hence the systematic errors seem to be large in comparison to
the statistic errors. Considering the size of systematic errors, clear deviation between the simulation
result and the expected scaling function is not observed.

Method 2: Computing the derivative operators Moreover, the derivative of the chiral order
parameter is computed by the calculation of the following operators,

(21), =(2)+(2]), Fo=(%0),
= (61) + (%021), Fo=(C2)+2(6121) + (6022) + (602%). (3.6)

S &
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Figure 4: O(4) scaling plot of the second derivaFigure 5: The second derivative of the critical
tive of the chiral order parameter by method 2. curve in the(, tq/T) planec.

Then, the derivatives of the chiral condensate are given by

_ 2mqa§ J <’I/L,U> _ 2mqa (91*905271) _ 07

(Yy) bt = N 9(kg/T) b e
(92 m 2mya 2mya
4= S S

where we used the properties that and.7, are zero for odah's at pig = 0.

The results of the second derivative are plotted in@igith the form of Eq.[2.3). The scaling
functionsd f /dx are also denoted similarly to Fi@.The difference between the results by method
1 and method 2 would be the systematic error, which is larger than the statistic error. Although the
uncontrollable systematical error is large, the simulation results roughly show the expected scaling
behavior.

4. Curvature of the critical line in the chiral limit

Next, we estimate the second derivative of the critfgavith respect tqug in the chiral limit,

ie.c= —dZBct/d(uq/T)z, by three following methods, assuming the O(4) scaling behavior:
1 d’m

/51y d(pg/T)?

df(x)

=¢ dx

4.1)

Hq=0 x=t /h1/y

FigureHis a summary plot of the results of The magenta line is the result by the global fit of the
scaling plot in Sec3] i.e.c = 0.0290. The symbols are the ratio @M /d(pq/T)2)h~Y/ o1y
to d f(x)/dx, which givesc. The average of obtained by the reweighting method (method 1) is
c = 0.027342), shown by a blue line in Fidd, and the average of the results from the second
derivatives by the operator method (method 2)+50.025743), drawn by a black line.

The curvature of the critical temperatufg(Lq) at g = 0 can be calculated by and the
beta function ag1/Tc)(d?Te/d(Lq/T)?) = cla(dB/da)] L. This requiresa(dB/da) at B in the
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chiral limit. The beta functiora(df3/da) for our lattice action was estimated in R&E]] for the
pseudo-scalar-to-vector mass ratips/my > 0.65. Adoptinga(d/da) ~ —0.5 atmps/my =
0.65, we obtain—(1/T¢)(d?Te/d(g/T)?) = 0.05-006. This value is similar to that obtained
using improved staggered quark actions in Rékahd [12], but is much smaller than that of an
experimental estimate for the chemical freeze out.

5. Summary

We discussed the scaling property of the chiral order parameter in the low density region of
2-flavor QCD. The chiral order parameter and its second derivative were computed performing a
simulation with improved Wilson-type quarks. We then compared the results with the O(4) scaling
function. The scaling behavior turned out to be roughly consistent with the O(4) universal scaling.
Assuming the O(4) scaling, we estimated the curvature of the phase boundary(f, theT)
plane. However, to confirm the scaling property of 2-flavor QCD, a systematic study varying
lattice volume and spacing is needed.
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