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1. Introduction

The gluon propagator is the most fundamental quantity of QCD and its idftagkavior is
believed to be closely related to the phenomenon of color confinement in thg.the particular,
the Gribov-Zwanziger confinement scenario in Landau gauge [1]qisealsuppressed gluon prop-
agator in the infrared limit (in combination with an enhanced ghost propggatocording to this
scenario, in fact, the gluon propagator should go to zero in the limit of viemgishomentum. These
predictions are investigated by approximate analytic methods such as Bgbannger equations
and functional renormalization group calculations. At the same time, the latticrifation can
provide valuable insight into the problem and numerical checks of thegbiats. Unfortunately,
the infrared limit corresponds to large lattice sizes, which are computatioraifhanding. This
issue has turned out to be particularly challenging in Landau gaugeringguumerical investi-
gations using the largest lattices ever considered (see [2] for a reMimvErtheless, the infrared
limit may be qualitatively studied for pure SU(2) gauge theory and, at the sameusing very
large lattices might greatly reduce the infamous problem of gauge-fixing ampdpe to Gribov
copies [3].

Lattice simulations have established that the momentum-space gluon profgattpis sup-
pressed in the limit of small momentuppwhile the real-space gluon propagator violates reflection
positivity. This latter feature, consistent with gluon confinement, is obdefiveall lattice vol-
umes. On the other hand, whereas a fibop?) to the Gribov form is possible at moderate lattice
volumes, data obtained using very large lattices (of linearIsize27 fm) revealed thaD(0) is
strictly nonzero. This behavior has been termed “massive”, since it manydspreted as a dynam-
ically generated mass for the gluon, and was first proposed as a soluttos Byson-Schwinger
equations of QCD in [4]. Several variants of such massive behavi@ been used to fit lattice
data for the Landau-gauge gluon propagator. In particular, in [53} geod fits to rational (or
Gribov-Stingl) forms were obtained in the four-dimensional case, as wdtirathree space-time
dimensions. These fits are shown in Fig. 1. The fitting forms in the 4D and inDhea8es are
given respectively by

2 +d
20 = C e e D
and
2 2

(p*+w?p? +1t2)(p2 + V)’

corresponding (respectively) to three and to four free parameteeg]dition to the global nor-
malization constan€. Noting that the three-dimensional case may be viewed as the infinite-
temperature limit of the four-dimensional case in the transverse sectomayde motivated to
look for an interpolation of the above 4D and 3D zero-temperature formegorithe the finite-
temperature data for the propagator.

In this contribution we present final results of our numerical study of thieeftemperature
gluon propagator in the electric sector. We focus on the infrared valtleedbngitudinal propa-
gatorDy (p?) as a function of the temperature. A detailed analysis of our data will beriegse
elsewhere [6]. (Preliminary results were reported in [7, 8, 9, 10].)



Systematic Effects at Criticality for the Gluon Propagator Tereza Mendes

D(p?)
D(p?)

p p

Figure 1: Fits of zero-temperature data for the SU(2) Landau-gaugengbropagator to rational (Gribov-
Stingl) forms in the 4D (left) and 3D (right) cases. Plotsragted from [5].

2. Gluon propagator at finite temperature

As the temperaturé is turned on, we expect to observe Debye screening of the colorecharg
In particular, at high temperatures, deconfinement should be felt in tiggudmal (i.e. electric)
gluon propagator as an exponential fall-off at long distances, defmsweening length and con-
versely a screening mass [11]. It is not clear how such a mass would gh@round the crit-
ical temperaturel.. At the same time, as discussed above, studies of the gluon propagator at
zero-temperature have shown a (dynamical) mass. One can try to use dhiedtge to define
temperature-dependent masses for the region ardyn&€onversely, the dimensional-reduction
picture (based on the 3D-adjoint-Higgs model) suggests a confined maglueti; associated to
a nontrivial magnetic mass. This mass should in turn be obtained from thesthfvehavior of the
transverse gluon propagator.

Lattice studies of the Landau-gauge gluon propagator around thefaemoent phase transi-
tion in pureSU(2) andSU(3) theory, as well as considering dynamical quarks, have been prdsente
in[12, 13, 14, 15, 16, 17, 18, 19]. In the transverse (i.e. magnetitdis®ne sees strong infrared
suppression of the propagator, with a turning point of the curve desthp the momentum-space
magnetic propagatddt (p?) for momentap around 400 MeV. This suppression seems even more
pronounced than in the zero-temperature case discussed in the Itivadudso, Dt (p?) shows
considerable finite-physical-size effects in the infrared limit, as obsdoredl = 0. Furthermore,
just as forT = 0, the magnetic propagator displays a clear violation of reflection positivitgah r
space. Essentially these same features are se@x {@?) at all nonzero temperatures considered.

The longitudinal propagatdd, (p?), on the other hand, shows significantly different behavior
for different temperatures. As soon as a nonzero temperature is ingdu the systenD (p?)
increases considerably (wherdas(p?) decreases monotonically). More precisely, for all fixed
temperatures, the curve describediyp?) seems to reach a plateau in the low-momentum re-
gion (see e.g. [8]). As the temperature is increased, this plateau inestigsely until, approaching
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the phase transition from below, it has been observed to rise furthgéhandjust above the tran-
sition temperature, to drop sharply. This has been interpreted as a sigyuis behavior of the
longitudinal gluon propagator arourid and, in fact, it has been related to several proposals of
a new order parameter for the deconfinement transition. (Of coursée\aant question is, then,
whether this singularity survives the inclusion of dynamical quarks in therytjé7, 18].)

Let us mention that, at all investigated temperatures, the infrared platealegestbed is not
long enough to justify a fit to the Yukawa form

DL(p%) = sz—imz’ (2.1)
predicted at high temperatures. If this were the cﬁrké())—l/z would provide a natural (tempe-
rature-dependent) mass scale. Note that this value depends also onbidlecgltstanC. On the
other hand, Gribov-Stingl forms such as in Egs. (1.1) and (1.2) abewtvancomplex-conjugate
poles, defining real and imaginary masses (independen@y.dfiere we do not show data (or fits)
for D_(p?). Such curves and (preliminary) fits can be seen e.g. in [9]. Instead;jleok at the
value ofD| (0) (after normalization b¥Z) as a function off .

Concerning the longitudinal propagator in real space (see e.g. [Hitiity violation is ob-
served unequivocally only at zero temperature and for a few casesdthe critical region, in
association with the severe systematic errors discussed below. For alkkasies, there is no viola-
tion within errors. Also, we always observe an oscillatory behavior, attlie of a complex-mass
pole. In the next section, we present our new results for the infraees oD, (p?).

3. Results

Our large-lattice study was done considering the pure SU(2) case, widndasd Wilson
action and lattice sizel3 x N, ranging from 48 x 4 to 192 x 16. For our runs we employ a
cold start, performing a projection on positive-Polyakov-loop configoma. Also, gauge fixing
is implemented using stochastic overrelaxation. The gluon dressing funetienswormalized to
1 at 2 GeV. We considered several values of the lattice pararfietalfowing a broad range of
temperatures. Our procedure for determining the physical tempeiatisrdescribed in [8]. The
momentum-space expressions for the transverse and longitudinal glopagatorsD+ (p?) and
D (p?) can be found e.g. in [12].

As can be seen from the data in [9], the longitudinal (electric) propadatop?) displays
severe systematic effects aroundfor the smaller values o;. These effects are strongest at
temporal extent\; = 4 and large values dfls. We note that the systematic errors for smill
come from two different sources: “pure” small-effects (associated with discretization errors)
and strong dependence on the spatial lattice Niza fixedN;, for the cases in which the value of
N; is smaller than 16. The latter effect was observed only tT., whereas the former is presentin
a wider range of temperatures aroufdIn particular, the finite-spatial-volume effects oy (p?)
atN; = 4 are strongest &k, but are still very large at = 0.98T; and are much less pronounced
for T = 1.01T..

In Fig. 2 we show data foD, (0) as a function of the temperatufe We show such values as
obtained from all our runs, grouping together (by color) the runsoperéd at the same temporal
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Figure 2: Infrared-plateau value for the longitudinal gluon propagdestimated byD, (0)] as a function
of the temperature for the full range @f/T. values. Data points from runs at the same valu&ioére
grouped together and indicated by the label “DNg’, where “sym” is used to indicate symmetric lattices
(i.e.T=0).

extentN,. We remark that, as said above, not all curve®Dpfp?) reach a clear plateau in the
infrared limit. Nevertheless, looking at the value @f (0) gives us an indication of what this
plateau might be, and is useful to expose the strong systematic effectssdidcere. In Fig. 3 we
present an enlarged view of the same values for the temperature regiomay.

We can see that the very suggestive sharp pedkseen fol\; = 4 (corresponding to the red
points in Figs. 2 and 3) turns into a finite maximum aroundi@f@r N; = 16 (blue points). In other
words, the observed singularity at smaller valuedio$eems to disappear. The only indication of
a possible singular behavior is a finite maximum close to (butt)dhe critical point, somewhat
reminiscent of a pseudo-critical point as observed for the magnetietilsitity of spin models in
an external magnetic field (see e.qg. [20, 21]).

Let us mention that, as reported in [9], good fits are obtained (in the tneesard longitudinal
cases) to several generalized Gribov-Stingl forms, indicating the qpres# comparable real and
imaginary parts of pole masses. These masses are smooth functioasaeind the transition, and
the imaginary part of the electric mass seems to get smaller at higlasrexpected.
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Figure 3: Same as Fig. 2 above, but showing only the temperature regoamdT..

4. Conclusions

We have performed numerical simulations of the longitudinal (electric) and\tesse (mag-
netic) Landau-gauge gluon propagator at nonzero temperaturermShi(2) lattice gauge theory.
We employ the largest lattices to date, especially for temperatures arourecthrdfidement phase
transition. We are currently completing our study of fitting forms for desagiliire massive be-
havior of the propagator [6]. From our data for the longitudinal glu@ppgatoD, (p?), we have
uncovered quite severe systematic effects.

Our results point to unusually large systematic errors around criticality.atticplar, very
strong effects related to small values of the temporal exteof the lattice are seen on the lower
side of the transition temperature and are practically absent just dpo8&ong finite-size effects
are certainly not unexpected around a second-order phase transii@nas the deconfinement
transition in the SU(2) theory. On the other hand, we note that our data amontrivial depen-
dence on the finiteemporalsize of the lattice and on the distance from the critical point, not easily
interpreted as a finite-size or a discretization effect.

After removing these systematic effects, i.e. considering the data obtainedheitargest
value of N; in Fig. 3, we see that the sharp peak suggested by the red points in Fig.s2rito
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a smooth maximum, at arounddc. In agreement with several observations that the gluon mass
scale is a smooth function of the temperature, this suggests that there iscific signature of
deconfinement associated with (p?). In fact, the only qualitative feature of a deconfined phase
we observe is the lack of violation of reflection positivity for the real-speleetric propagator,
which holds however for all' # 0 considered.

Finally, let us mention the similarity between our smaller-lattice results for the SJdé2) and
existing results for SU(3). In view of this, we trust that statements that trersavof the zero-
momentum value of the gluon propagator might provide an order parametbefdeconfinement
phase transition (such as recently made in [19]) will be taken with the du®cau
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