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The subtraction of hypercubic lattice corrections, calculated at 1-loop order in lattice perturbation
theory (LPT), is common practice, e.g., for determinations of renormalization constants in lattice
hadron physics. Providing such corrections beyond 1-loop order is however very demanding in
LPT, and numerical stochastic perturbation theory (NSPT) might be the better candidate for this.
Here we report on a first feasibility check of this method and provide (in a parametrization valid
for arbitrary lattice couplings) the lattice corrections up to 3-loop order for the SU(3) gluon and
ghost propagators in Landau gauge. These propagators are ideal candidates for such a check, as
they are available from lattice simulations to high precision and can be combined to a renormal-
ization group invariant product (Minimal MOM coupling) for which a 1-loop LPT correction was
found to be insufficient to remove the bulk of the hypercubic lattice artifacts from the data. As a
bonus, we also compare our results with the ever popular H(4) method.
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Introduction

With the advancement of computer technologies, lattice QCD calculations have become an
essential tool to tackle problems of strong interaction physics. For many applications nowadays
the statistical uncertainties have been reduced to such a degree that a full understanding of all
systematic errors is more important to reach high precision than a further increase of statistics.

One of these systematic errors comes from the lattice itself: The symmetry group on the lat-
tice is the hypercubic group H(4), a subgroup of O(4). This introduces lattice artifacts for any
lattice momentum but zero which only disappear in the continuum limit. Of course, the severity
of these hypercubic lattice artifacts depends on the lattice spacing a, but since lattice calculations
are currently done for values of a between 0.04 and 0.09fm it may be important to know these
artifacts for one’s favorite observable on a quantitative rather than qualitative level. In general,
discretization effects are most visible at large lattice momentum a2 p2 with pµ = 2πkµ/aNµ

(
with

kµ ∈ (−Nµ/2,Nµ/2]
)
. However, this dependence is non-monotonous as lattice observables trans-

form as functions of the four H(4) invariants {p2, p[4], p[6], p[8]} with p[n] ≡ ∑µ pn
µ rather than just

of p2 as in the continuum.
There are mainly two approaches that have been followed in the past to treat these artifacts.

One is the so-called H(4)-method (see, e.g., [1]), which relies on fitting coefficients of an expansion
in the hypercubic invariants. Another is calculating hypercubic corrections in lattice perturbation
theory (LPT). This has been used and developed for precision determinations of renormalization
constants for hadronic operators [2] where an efficient treatment of such artifacts is crucial. For
these calculations one often uses plane-wave sources for the inversion of the fermion matrix to
keep the statistical noise at a minimum and also restricts to momenta close to the lattice diagonal to
minimize hypercubic lattice artifacts. To further reduce discretization errors, one subtracts the dif-
ference ∆O(p) of an operator O in LPT at finite lattice spacing a and its value in the corresponding
limit a→ 0. Unfortunately, the calculation of ∆O(p) even at 1-loop order can be rather involved
in LPT for certain operators and actions. Furthermore, in some cases a 1-loop correction does not
suffice.

Numerical stochastic lattice perturbation theory (NSPT) provides a way out: It allows for a
non-diagrammatic but stochastic treatment of LPT to high loop orders and so to get an estimate for
∆O(p) beyond 1-loop.1

We will test the feasibility and precision of such an approach here for the gluon (Z) and
ghost (J) dressing functions and in particular for the Minimal MOM coupling in Landau gauge [4]

α
MM
s (p) =

g2
0(a)
4π

Z(a, p)J2(a, p), a→ 0, (1)

which serves as an ideal benchmark for this: Its renormalization-group invariance is slightly broken
on the lattice at larger momenta by the hypercubic lattice artifacts of the gluon and ghost dressing
functions and a subtraction of the exact 1-loop correction was shown to be insufficient to repair this
in the data for αMM

s [5]. It also allows us to focus first on quenched QCD, keeping the additions of
fermions to the NSPT calculations for later.

1For a NSPT calculation of renormalization constants, see, for example, [3].
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Figure 1: NSPT data for the gluon (left) and ghost (right) dressing functions for diagonal lattice momenta
up to 3-loop order. Curves represent the a→ 0 result (see text). Arrows mark the hypercubic lattice artifacts.

Z and J from Numerical Stochastic Perturbation Theory

To get the desired hypercubic corrections, we have to calculate the Landau-gauge gluon and
ghost propagators in NSPT. Details for this can be found in [6]. Here it suffices to mention that
their tensor structure (for the Wilson gauge action) is of the familiar form

Dab
µν =

(
δµν −

p̂µ p̂ν

p̂2

)
δ

ab Z
p̂2 and Gab = δ

ab J
p̂2 , (2)

where p̂µ = 2
a sin(a pµ/2) denotes the eigenvalues of the free lattice Laplacian. The results are

obtained in orders of g2
0, because the SU(3) link fields Ux,µ are kept as an expansion in powers of

β = 2Nc/g2
0 which also requires algebraic operations to be performed with respect to this perturba-

tive structure for operators A and B:

Ux,µ = 1+ ∑
k≥1

β
−k/2U (k)

x,µ , (A+B)(k) = A(k)+B(k), (AB)(k) =
k

∑
j=0

A(k) B(k− j). (3)

Furthermore, the framework of NSPT relies on stochastic quantization. This is implemented by
adding an artificial time τ to the gauge fields whose evolution in τ is governed by a Langevin
equation, which is solved numerically. A suitable Euler scheme reads

Ux,µ(τ + ε) = exp{−iε ∇Ux,µ S[U ]+
√

ε ηx(τ)}Ux,µ(τ), (4)

where η = ηata is a random gaussian distributed su(3) field (ta being the generators of SU(3))
and S[U ] (in our case) the Wilson plaquette action. ∇Ux,µ is the discretized left Lie derivative with
respect to Ux,µ . Since the Euler time step ε has to be finite, simulations have to be performed for
several ε such that at the end the limit ε → 0 can be taken.

We choose ε = 0.03, 0.02 and 0.01 for all our simulations and collect data for J(l) and Z(l)

for l = 1, . . . ,4 loops after fixing Ux,µ to Landau gauge. We will focus here on diagonal lattice
momenta and our lattice sizes are 84, 164, 244 and 324. Data for a 484 lattice is in progress.
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In Figure 1 we show our NSPT data for the gluon and ghost dressing functions up to 3-loop
order. As we are interested in the hypercubic lattice corrections for diagonal lattice momenta we
only show points for these momenta and compare it to the momentum dependence

J(i)cont(a
2 p2) = j(i)0 +

i

∑
k=1

j(i)k

(
log(a2 p2)

)k
. (5)

expected in the limit a→ 0 (for simplicity we write J meaning both J and Z). For the 1-loop
curve we use the well-known coefficients, j(1)0 and j(1)1 , from [7], while for the 2-loop and 3-loop
curves we use the coefficients j(i=2,3)

k>0 multiplying the divergent logarithms from 3-loop continuum

perturbation theory [8], and the finite j(i)0 from our fits (see below). Within errors our values for
the latter agree with those found in [6]. For a better illustration, we have marked the momentum-
dependent hypercubic lattice corrections ∆Z and ∆J in Figure 1 which we aim to quantify:

∆J(i) = J(i)lat(a
2 p2,a4 p[4],a6 p[6],a8 p[8])− J(i)cont(a

2 p2). (6)

Removal of finite size effects

Although a first look at Figure 1 suggests we will get ∆Z and ∆J straightaway, a closer inspec-
tion of the raw data reveals we have to carefully treat finite size effects first. These are visible in
particular for the ghost propagator at small momenta (see, e.g., the open symbols in Figure 2).

To treat these effects we follow a procedure proposed in [6], albeit in a slightly different man-
ner. It starts with the observation that an observable O on the lattice only depends on dimensionless
quantities, namely on ap (in the way as mentioned above) and on pL which comes in due to the
finite lattice extent N = L/a:

O(pa, pL) = O(pa,∞)+δO(pa, pL). (7)

To get O in the infinite volume limit one can either extrapolate data for several volumes or calculate
and subtract δO(pa, pL) from the data. We choose the latter, which is more robust in our case,
and determine δO(pa, pL) in the following way, similarly to [6]: We assume we can neglect the
influence of additional (hypercubic) pa-corrections to δO, i.e., δO(pa, pL) ≈ δO(0, pL). This
quantity then only depends on the integer tuple k that defines the momentum ap, because pµ L =
2π kµ

N a N a = 2π kµ . Furthermore, an observable O(pa,∞) is expected to be equal for equal physical
momenta, i.e., for equal k/N. That is, the difference must be due to the finite-size effect and we
can write:

1. δO(k,N1) = δO(k,N2)

2. δO(k1,N1) = O(k1,N1)− [O(k2,N2)−δO(k2,N2)] if k1/N1 = k2/N2 .

This allows us to go through our data along sequences of links (paths), each connecting two data
points of either constant k/N or k, and to get the pL-error for each path recursively. As a starting
point for this recursion we choose δO(kmax,Nmax) = 0 which should be valid for large Nmax.

By that procedure we can reach nearly all pairs of (k,N). Most of them can be accessed by
many different paths over which we average. The pL-error of points that are disconnected from the
anchor (kmax,Nmax) is interpolated linearly between neighbouring values of k/N.
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Figure 2: Hypercubic lattice artifacts at 1-loop order for the gluon (left) and ghost (right) dressing functions.
pL-corrected (uncorrected) data is shown by full (open) symbols. Green curves are the exact 1-loop LPT
results from [5]. Red bands are from a fit to the data.
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Figure 3: Hypercubic lattice artifacts up to 3-loop order for the gluon (left) and ghost (right) dressing
functions at β = 6.92. Bands result from a fit to our NSPT data.

This method of finite-size corrections turns out to be very successful. To demonstrate that we
show in Figure 2 (right) our 1-loop data for the uncorrected (open symbols) and the pL-corrected
(full symbols) difference ∆J (Eq. (6)). There we see, finite size errors have quite an effect at
low momenta and it is necessary to remove them, but after the pL-correction the ∆J data from
different lattices falls on top of the curve one knows exactly from 1-loop LPT (from [5]). The gluon
propagator data is currently too noisy for a removal of pL-effects and it thus remains uncorrected
in what follows. Though, within errors, points lie on the 1-loop LPT curve already.

Results

Now, that we have checked that our 1-loop NSPT results conform with the exact from LPT,
we can quantify the hypercubic lattice artifacts (Eq. (6)) up to 3-loop order. To ease their later use
we will provide them in a parametrization independent of the lattice coupling β . For this we fit
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Figure 4: Coupling constant in the Minimal MOM scheme for quenched QCD in Landau gauge. Data is for
a fixed physical volume (from [5]), before (left) and after (right) correcting for discretization effects.

each order separately to a polynomial of the H(4) invariants:

∆J(i)(p2, p[4], p[6], p[8]) = c2 p2 + c4 p[4]+ c6 p[6]+ c8 p[8]. (8)

The (summed-up) hypercubic lattice artifacts are then obtained for each value of β from:

∆J(β , p2, p[4], p[6], p[8]) =
3

∑
i=1

β
−i

∆J(i)(p2, p[4], p[6], p[8]). (9)

A comparison with the exact 1-loop LPT result from [5] shows that these fits describe the
overall momentum dependence quite well, even though it cannot describe it perfectly (see Figure 2).
There the fit is dominated by the many points at higher momentum while being constrained to zero
at a2 p2 = 0. So there are small deviations for small a2 p2. We therefore regard this fit model not as
best but as best usable to parametrize the leading hypercubic artifacts.

The final results for ∆Z and ∆J can be seen in Figure 3. There we choose β ≡ 6.92 and one
sees that even for this fine lattice (a≈ 0.026fm) the 3-loop order correction still contributes rather
significantly to the gluon dressing function. The ghost dressing function needs improvement to at
least 2-loop order. This explains why a 1-loop correction of the data for αMM

s is insufficient as seen
in [5]. Our new results allows us now to correct the hypercubic lattice artifacts up to 3-loop order,
and, as evidenced in Figure 4, with these we are successful: The corrected αMM

s data (from [5])
for the different lattice spacings falls on top of each other for all momenta. Renormalization-group
invariance is thus restored.

Comparison with the H(4)-Method

It is interesting to compare our approach to the above-mentioned H(4)-method. With this, one
tries to fit the coefficients ci of the hypercubic expansion of O(ap), e.g., truncated at O(a4),

O(a p̂) = O(a2 p2)+ c2 a2 p[4]

p2 + c4 a4 p[4]+ · · · . (10)

regarding O(a2 p2) as the discretization-artifacts-free operator [1]. A simultaneous fit of all the ci’s
in (10) requires many degenerate H(4) orbits for nearby a2 p2, that is this method works best for
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intermediate momenta on large lattices. For a fair comparison, we therefore choose a 644 lattice, for
which we have data for Z for many different orbits. Looking again at diagonal momenta, we find
the H(4) correction scatter, where available, around our 3-loop NSPT correction (see Figure 5).

Conclusion

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25 30 35 40
∆
Z

a2 p2

only diagonal momenta

NSPT corrections

H(4) corrections

Figure 5: Hypercubic corrections for the gluon
dressing function for diagonal momenta (644 lat-
tice at β = 6.92). Blue crosses are from the H(4)-
method, using all available orbits (not shown).
The curve is the 3-loop correction from NSPT.

We have developed a new way to determine
and remove discretization errors which are present
in any lattice observable due to the hypercubic lat-
tice symmetry. Our method is based on a pertur-
bative calculation in the framework of NSPT, and
a first application to quenched data for the Min-
imal MOM coupling in Landau gauge has been
very successful (see Figure 4).

Our method can easily be extended, for in-
stance, to aid calculations of renormalization con-
stants for hadronic operators. It is planned to test
this next. More details on our approach will be
given in a forthcoming article.
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