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1. Introduction

The gradient (or Wilson) flow in Yang-Mills theory is defined by the non-linear equation [1]

dBµ(x, t)
dt

= DνGνµ(x, t) , Bµ(x,0) = Aµ(x) , (1.1)

where t is the flow time and Gµν = ∂µBν −∂νBµ +[Bµ ,Bν ]. Due to

DνGνµ ∼−
δSYM[B]

δBµ

, (1.2)

the flow effectively constitutes a smoothing of the gauge field over a range
√

8t and drives it towards
a local minimum of the action. One remarkable feature of this procedure is the fact that the gauge
field Bµ at t > 0 is renormalized, rendering expectation values of local, gauge-invariant quantities
like the energy density

〈E(t)〉= 1
4
〈Ga

µν(t)G
a
µν(t)〉 (1.3)

finite [1]. This can be used to define a non-perturbative gradient flow (GF) coupling in terms of the
energy density at positive flow time [1] at a renormalization scale µ = 1/

√
8t. In order to study the

running coupling in asymptotically free theories such as QCD, finite size scaling is applied, i.e.,
the renormalization scale runs with the size L of the box,

µ =
1√
8t

=
1

cL
, (1.4)

where c represents the fraction of the box over which the gauge field is smoothed. This approach
was implemented in a periodic box [2] and in the Schrödinger functional (SF) [3], where the GF
coupling is defined as

ḡ2
GF(L) := N −1 · t2〈E(t,x0)〉

∣∣x0=T/2
t=c2L2/8 . (1.5)

The normalization factor N −1 in (1.5) ensures ḡ2
GF = g2

0 +O(g4
0). Note that as the SF breaks

translational invariance in time direction, the energy density becomes explicitly dependent1 on x0.
In [3], the GF coupling has been investigated on the lattice in view of numerical costs and

cutoff effects for ensembles of N f = 2 simulations at a line of constant physics, defined by a con-
stant value of the SF coupling, which corresponds to L∼ 0.4 fm. Smoothing fractions in the range
c ∈ [0.3,0.5] turn out to be convenient, as their use leads to high statistical precision at affordable
cost and modest cutoff effects. However, at the considered physical volume, the path integral is
largely dominated by the trivial topological sector (Q = 0) and contributions from other sectors can
be considered negligible.

In contrast, at larger volumes like L∼ 0.8 fm, sectors of non-vanishing topological charge are
expected to contribute, which brings up the question about the well-known problems of topology
freezing and critical slowing down [4]. The aim of the present work is to investigate whether and
how the determination of the gradient flow coupling is affected by these phenomena.

1Boundary fields and fermionic phase angle of the SF need to be specified as well.
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L/a β Nms MDUs
8 5.9032 80000 6

12 6.1410 80000 6
16 6.3413 40000 6
20 6.5119 15000 12
24 6.6552 7000 12

Table 1: Parameters of the numerical simulations.
Nms is the amount of measurements and the last col-
umn shows the number of molecular dynamic units
between two consecutive measurements.

a

L/a c = 0.3 c = 0.5
8 98.66(08) 98.94(08)

12 98.19(20) 98.45(19)
16 98.46(62) 98.56(61)
20 *99.91(03) *99.96(02)
24 *99.52(36) *99.54(36)

Table 2: Percent of configurations with topological
charge Q≤ 0.5. The values denoted with an asterisk
are biased.

2. Numerical simulations

In order to be able to produce large statistics, we perform simulations in pure SU(3) Yang-
Mills theory with the Wilson gauge action. We choose SF boundary conditions with zero boundary
gauge fields, and fix the physical volume in terms of the Sommer scale:

L = r0/0.563∼ 0.8 fm . (2.1)

For lattice sizes of L/a = 8,12,16,20,24, we simulate along the line of constant physics defined
by (2.1). The corresponding bare couplings (β = 6/g2

0) are determined using [5]

log(a/r0) =−1.6804−1.7331(β −6)+0.7849(β −6)2−0.4428(β −6)3 (2.2)

and can be found along with other parameters of the simulation in Tab. 1. We use the HMC of the
openQCD package [6] and the 2-loop value of ct for O(a) improvement [7]. Each produced con-
figuration is evolved by integration of the flow equation (1.1), including flow times t corresponding
to c = 0.3,0.5. Afterwards, on the smoothed configurations the topological charge,

Q(t) =
1

16π2 ∑
x

Gµν(x, t)G̃µν(x, t) , (2.3)

and the GF coupling are measured using the clover discretisation for the field strength.

3. Results

3.1 Distribution of the topological charge

Histories of the topological charge are shown in Fig. 1 for c= 0.3. For lattices up to L/a= 16,
one observes that non-trivial configurations appear to cluster more and more as the lattice gets finer.
This goes together with the increasing integrated autocorrelation time displayed in Fig. 2. For the
largest lattices L/a = 20,24, configurations from non-trivial sectors appear less often, see Tab. 2.
However, the autocorrelations of Q are obviously largely underestimated (cf. Fig. 2), from which
we infer that the current statistics is not sufficiently large to sample the topological sectors correctly.
Note that throughout this work, statistical errors were computed using the Γ-method [8, 9].
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Figure 1: Histories (in excerpts) of Q, for c = 0.3. The plots in red, orange, green and blue correspond to
L/a = 12,16,20,24, respectively.
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ḡ2GF,0

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

L/a

(a
/
L
)2

·
τ
in
t
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ḡ2GF,0

Figure 2: Integrated autocorrelation time of the topological charge Q (top) and the (modified) gradient flow
coupling (bottom), multiplied by (a/L)2 and in units of 2 MDU. The left panel corresponds to c = 0.3, the
right one to c = 0.5.
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Figure 3: Top: Histories of ḡ2
GF. Bottom: Correlation of ḡ2

GF and Q. All plots are shown exemplarily for
L/a = 12. The left panel corresponds to c = 0.3, the right one to c = 0.5.

3.2 Correlation of gradient flow coupling and topological charge

The histories of the quantity N −1t2E, whose expectation value is the gradient flow coupling
ḡ2

GF, exhibit a certain amount of large values, see Fig. 3. This phenomenon is more pronounced the
larger c is chosen, and goes along with an increasing correlation between the gradient flow coupling
and the topological charge. In particular, the large values of N −1t2E stem to a high amount from
configurations of non-vanishing topological charge. In turn, the correct sampling of the topological
sectors becomes a necessity in order to obtain correct results. However, as we have seen in sec. 3.1,
this requirement is not fulfilled for the two largest lattices, which means that the results for ḡ2

GF on
these lattices are biased.

3.3 The modified GF coupling

In order to assess the impact of the non-trivial topological sectors and their insufficient sam-
pling on the determination of ḡ2

GF, we consider a modified GF coupling, which has the same per-
turbative expansion but takes into account only gauge configurations from the trivial sector:

ḡ2
GF,0 = N −1 t2 〈E(t) δQ,0〉

〈δQ,0〉

∣∣∣∣
t=c2L2/8

. (3.1)

On the lattice, where we have non-integer values of Q, all configurations with |Q| ≤ ε (ε = 0.1,0.2,
. . . ,0.5) are considered to belong to the trivial sector, i.e., we replace δQ,0→Θ(Q+ε)Θ(ε−Q) in
(3.1). The results for L/a = 12 can be seen in Fig. 4. The contributions from non-trivial sectors
do make a difference, and the effect is stronger for large c due to the larger correlation discussed
in sec. 3.2. Moreover, we see that the particular choice of ε has no big influence on the modified

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
6
1

Critical slowing down and the gradient flow coupling in the Schrödinger functional Felix Stollenwerk

0 0.5 1
5.86

5.88

5.9

5.92

ǫ

ḡ
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Figure 4: Modified gradient flow coupling ḡ2
GF,0 for L/a = 12 against the range ε , where ε ≤ 0.5 can serve

as definition of the trivial sector on the lattice. Results for larger ε take into account configurations which are
considered non-trivial, but are nevertheless shown in gray for completeness. The point at ε = 1 corresponds
to the original definition ḡ2

GF of the gradient flow coupling. Left: c = 0.3. Right: c = 0.5.

gradient flow coupling. We use ε = 0.5 in the following. In Fig. 2, we compare the integrated
autocorrelation time for the gradient flow coupling in its original and modified form. We find that
the original coupling is affected by the bad sampling towards the continuum, whereas the modified
coupling does suffer less severely from critical slowing down and shows the expected ∼ 1/a2

behavior. In that sense, the modified gradient flow coupling can be considered to be safer.

3.4 Results and continuum limit

The full set of results for the two couplings ḡ2
GF and ḡ2

GF,0 is listed in Tab. 3. On the coarser
lattices (L/a = 8,12,16), the simulations show a clear difference between the two definitions. This
suggests that in the studied volume (L∼ 0.8fm), topologically non-trivial configurations play a
role in accurately determining the value of ḡ2

GF. On the two finer lattices (L/a = 20,24), we do not
observe a difference due to the critical slowing down that affects the determination of the original
coupling.

Since the results for ḡ2
GF on the finer lattices (L/a = 20,24) are biased, we conduct the contin-

uum extrapolation only for ḡ2
GF,0. To compare data of different lattice spacings we have to take into

account an additional error being introduced by the way the physical volume was fixed, Eq. (2.2)2.
This uncertainty turns out to be larger than the statistical errors (see Tab. 3). We find that the data
with L/a > 8 is well described by a fit linear in (a/L)2, see Fig. 5.

4. Summary & Conclusions

We investigated the gradient flow coupling in pure SU(3) Yang-Mills theory in a volume of
L∼ 0.8 fm. We find a significant correlation between the coupling and the topological charge,
which increases in strength with the smoothing fraction c. Simulations suffering from a bad sam-
pling of topological sectors and critical slowing down would lead to a biased determination of ḡ2

GF
in the continuum. We propose an alternative definition for the coupling (ḡ2

GF,0), which takes into
account only the trivial topological sector, and show that its determination is not affected by the

2The error on a/r0(β ) depends on β , but for simplicity we propagate its maximum value of 1% globally [5].
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Figure 5: Continuum extrapolation of the modified gradient flow coupling (crosses). The unbiased data
for the gradient flow coupling is also shown (open circles), the points being slightly shifted to the right for
convenience. Statistical errors are displayed in color, errors from the line of constant physics in gray. Left:
c = 0.3. Right: c = 0.5.

c = 0.3 c = 0.5
L/a ḡ2

GF ḡ2
GF,0 ḡ2

GF ḡ2
GF,0

8 5.647(13)(52) 5.631(13)(51) 19.313(121)(146) 19.140(14)(126)
12 5.894(15)(52) 5.875(14)(51) 10.243(143)(146) 19.983(23)(126)
16 5.924(10)(52) 5.908(18)(51) 10.487(117)(146) 10.255(54)(126)
20 *5.845(10)(52) 5.845(10)(51) *10.135(174)(146) 10.132(74)(126)
24 *5.818(28)(52) 5.810(17)(51) *10.128(123)(146) 10.021(96)(126)
∞ *5.818(62) 5.820(58) *10.156(258) 10.179(210)

Table 3: Results for the (modified) gradient flow coupling and its continuum extrapolation. The first error is
statistical, the second one stems from fixing the physical volume. Biased values are denoted with an asterisk.

bad topology sampling in the studied volume. We think that the alternative definition might be
advantageous for the determination of the running coupling in intermediate volumes.
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