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1. Introduction

Since the absence of colored states in the spectrum of QCD and the inability to detect free
quarks have not been explained from first principles yet, the color confinement phenomenon still
represents an open problem [1]. In the picture of the dual superconductor model for color con-
finement [2], a bound state of a quark-antiquark pair in the QCD vacuum, at low temperature and
density, may be thought of as a chromoelectric flux tube connecting the two charges. Through
the ’t Hooft construction, a physical analogy is traced between the QCD vacuum and an ordinary
electrical superconductor: the former behaves like a coherent state of color magnetic monopoles in
almost the same way as the latter behaves as a coherent state of Cooper pairs [3]. With the QCD
vacuum behaving like a dual superconductor, the observation of tube-like structures is an indica-
tion of the presence of a linear potential proving, from a phenomenological point of view, the color
confinement phenomenon [4–6]. Chromoelectric flux tubes, in this scenario, represent the dual
analog of Abrikosov vortices in the ordinary superconductivity [7–10]. The effect accounting for
their presence in the vacuum is the dual version of the Meissner effect.

Previous studies about the SU(3) confining vacuum have revealed that color flux tubes are
almost completely formed by the longitudinal chromoelectric field El , which is constant along the
line joining a static quark-antiquark pair, while rapidly decreasing in the transverse direction xt . In
this last direction, El (xt) has been fitted by means of functions coming from the theory of ordinary
superconductivity and being rewritten according to the dual analogy [4, 5].

In the present work, in view of extending the studies about flux tubes in SU(3) vacuum to
the case of finite temperature, as a preliminary step, a correlator between two Polyakov loops is
implemented on the lattice. One of the Polyakov loops is connected to a plaquette, to measure,
as first, the field at zero temperature. Before discussing the results of numeric measurements and
comparing them with the ones produced when the correlator of a Wilson loop with a plaquette was
considered, the two possible fitting functions for El(xt) are traced back to both the London model
and Ginzburg-Landau theory for the ordinary superconductivity [7–9].

2. Fit functions

Two main proposals for the shape of El (xt) will be considered. The first one [4], usually said
to be derived from the London model for the ordinary superconductivity, is

El (xt) =
Φ

2π
µ

2K0 (µxt) , xt > 0, (2.1)

while the second one [5] is

El (xt) =
Φ

2π

µ2

α

K0

[(
µ2x2

t +α2
)1/2
]

K1 [α]
. (2.2)

In the expressions above, K0 and K1 are the modified Bessel functions of order zero and one respec-
tively, Φ is the external flux, λ = 1/µ is the London penetration length and α = ξν/λ is a quantity
which is tied to ξν (a variational core radius parameter of the order of the coherence length ξ of the
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magnetic monopole condensate), hence to the Ginzburg-Landau parameter κ , distinguishing type I
and type II superconductors, by means of the relation

κ =

√
2

α

[
1−

K2
0 (α)

K2
1 (α)

]1/2

. (2.3)

The main limitations concerning the use of the function (2.1) are that it diverges on the axis of the
vortex line, providing realistic values only far away from the vortex core (xt > 0), and that it gives an
adequate description of the transverse structure of the flux tube only if κ = λ/ξ � 1, that is only in
the Shubnikov phase, far enough from the upper critical field. Conversely, the function (2.2) yields
realistic values for the field also in the vortex core vicinity and it reduces to (2.1) far outside the
vortex core. In what follows it will be shown that the choice of the theory from which one derives
the expressions for El (xt) is just a matter of convenience: both functions can be derived, under
proper assumptions and dual transformation, from both London and Ginzburg-Landau theories.

3. Fit functions from London Model

The phase diagram for type II superconductors shows the existence of two critical fields Bc1

(lower) and Bc2 (upper). In between Bc1 and Bc2, the superconductor is in the so-called mixed
state. The lower critical field is the one at which the first vortex line appears in the superconductor.
Slightly above Bc1 only a few vortex lines occur, separated by a distance much greater than λ , such
that they can be treated as isolated. This allows the use of the London model with the assumption
that the diameter (2ξ ) of the normal vortex core is very small compared to λ , i.e. κ � 1. In the
limit κ → ∞, the vortices become line singularities and can be described by the modified London
equation

µ0λ
2
∇∇∇× JJJ+BBB = Φ0δ (rrr− rrr0) ẑzz, (3.1)

where Φ0 is the flux quantum of the vortex line, while λ = 1/µ is the London penetration depth.
From (3.1) one obtains λ 2∇∇∇

2BBB−BBB =−Φ0δ (rrr− rrr0) ẑzz, which is solved by

BBB(r) =
Φ0

2π
µ

2K0 (µr) ẑzz. (3.2)

Then, (2.1) is obtained from this ordinary superconductivity result by use of the dual analogy.
Few extra assumptions are needed if one is to obtain the expression (2.2). One tries to avoid

the infinity at the vortex core by cutting off the magnetic field, applied on the z-axis of an infinitely
long cylindrical superconductor, within a certain critical radius r0 [9]. In the region r < r0, the
field B is assumed to be uniform and equal to B(r0/λ), while for r > r0 the field satisfies London
equation ∇∇∇

2BBB = BBB
λ 2 that, if variations of B in the θ and z directions are ignored, is solved by

B
( r

λ

)
=CI0

( r
λ

)
+DK0

( r
λ

)
. (3.3)

The cut-off allows us to retain the K-function solutions, while the I-function solutions increasing
monotonically with r are excluded, C = 0, for the case of an isolated fluxoid. Moreover, the London
fluxoid quantization condition, ∫∫

BBB ·dsss+
4πλ 2

c

∮
R

JJJ ·dlll = nΦ0, (3.4)
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holds since, inside r0, the sample is in the normal state. By taking the contour R at infinity, where
JJJ = 000, the integral is evaluated and D determined to give

B
( r

λ

)
=

nΦ0−πr2
0B(r0/λ)

2πλ r0

K0 (r/λ)

K1 (r0/λ)
, r ≥ r0. (3.5)

Now, the easiest way to smoothly extend this solution also in the region r < r0, where the cut-off is

active, is to make the substitution r→
√

r2 + r2
0. Then, by interpreting r0 as ξν , and invoking the

dual analogy again, (2.2) is obtained.

4. Fit functions from Ginzburg-Landau theory

In the context of Ginzburg-Landau theory for ordinary superconductivity, vortex line solutions
come from solving the Ginzburg-Landau equations in cylindrical coordinates, with the magnetic
flux line centered on the z-axis. The fact is that one has to do with coupled non-linear differen-
tial equations. However, if one choices an ansatz for the normalized order parameter Ψ, which
takes into account the depression of Ψ to zero on the axis and has the correct limiting behavior
(reproducing London results for r� 0), BBB can be obtained by solving the second Ginzburg-Landau
equation. Similarly, an ansatz for the potential vector can be introduced, with reasonable boundary
conditions. One can obtain (2.1) by assuming [10]

Ψ =

√
v
u

ρ (r)exp(iϕ (r)) , (4.1)

and the ansatz

AAA =
h̄c
q

a(r)
r

ϕ̂ϕϕ (4.2)

for the vector potential, inspired by the fact that, far from the vortex core, where JJJ = 000, the second
Ginzburg-Landau equation requires AAA = h̄c

q ∇∇∇ϕ (r). Clearly, the functions ρ (r) and a(r) in the
expressions for Ψ and AAA must be such that ρ (r) , a(r)→ 1 as r→ ∞, while ρ (r) , a(r)→ 0 as
r→ 0. Hence, far away from the vortex axis, the expansions

ρ (r) = 1+σ (r) , a(r) = 1+ rα (r) ; σ (r) ,α (r)→ 0 as r→ ∞, (4.3)

are admitted and the second Ginzburg-Landau equation reads

d2α (r)
dr2 +

1
r

dα (r)
dr

− α (r)
r2 =

4πq2v
mc2u

α (r)(1+σ (r))2 . (4.4)

Linearization, by taking r→ ∞ and keeping only terms linear in α (r) and σ (r), yields a modified,
homogeneous Bessel equation of the first order

d2α (r)
dr2 +

1
r

dα (r)
dr

−
(

1
r2 +

1
λ 2

)
α (r) = 0, λ =

√
mc2u
4πq2v

. (4.5)

The solution is the modified Bessel function of the second kind α (r) = K1(r/λ)/λ , from which

AAA =
h̄c
q

K1

( r
λ

)
ϕ̂ϕϕ. (4.6)
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Figure 1: (Left) The connected correlator (5.1) between the plaquette UP and the Polyakov loops (subtrac-
tion in ρconn

P not explicitly drawn). (Right) El (xt) versus xt at β = 6.1 after 16 smearing steps.

Applying the curl gives us BBB = Φ0
2π

µ2K0 (µr) ẑzz that, through the dual analogy, becomes (2.1).
To obtain (2.2), according to the method presented in [8] one has to use, as a variational trial

function, f = r/R, with R =
(
r2 +ξ 2

ν

)1/2, where r is the radial coordinate and ξν is a variational core
radius parameter. With bbb = bz (r) ẑzz , jjj = jϕ (r) ϕ̂ϕϕ , aaa = aϕ (r) ϕ̂ϕϕ in the Coulomb gauge, and with

Ψ(r) = f (r)exp(−iϕ) , f (r) = r/(r2+ξ 2
ν )

1/2, (4.7)

the second Ginzburg-Landau equation reads

jjj =− c
4πλ 2

[
aϕ −

Φ0

2πr

]
f 2

ϕ̂ϕϕ. (4.8)

The corresponding differential equation for aϕ and its solution are

d
dr

[
1
r

d
dr

(
ρaϕ

)]
− f 2

λ 2 aϕ =− Φ0 f 2

2πλ 2r
, aϕ =

Φ0

2πr

[
1− RK1 (R/λ)

ξνK1 (ξν/λ)

]
. (4.9)

One can, then, compute the magnetic flux and this leads, finally, to ( 2.2).

5. Color field measure on the lattice

In order to measure the color field for a static quark-antiquark pair in the SU(3) vacuum, the
connected correlator (see Fig. 1 (left)) of a plaquette UP with two Polyakov loops is implemented
on the lattice [6], as a natural modification of the connected correlator of a plaquette with a Wilson
loop. The difference is that studies at finite temperature are made possible through the use of

ρ
conn
P =

〈
tr
(
P(x)LUPL†

)
trP(y)

〉
〈tr(P(x)) tr(P(y))〉

− 1
N
〈tr(P(x)) tr(P(y)) tr(UP)〉
〈tr(P(x)) tr(P(y))〉

, (5.1)

N being the number of colors. The color field distribution is probed by varying position and orien-
tation of UP. In particular, El (xt) is measured with UP parallel to the plane formed by the Polyakov
loops, at distance xt from it. The reason one uses ρconn

P is that in the naive continuum limit

ρ
conn
P −−→

a→0
ga2
[〈

Fµν (x)
〉

qq−
〈
Fµν (x)

〉
0

]
, Fµν (x) =

√
β

2N
ρ

conn
P (x) . (5.2)
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Figure 2: (Up left) The inverse of the penetration length µ at β = 6.1 versus the smearing step. (Up right)
The same for the amplitude of the longitudinal chromoelectric field Φ. (Down left) The same for λ/ξν .
(Down right) The same for the Ginzburg-Landau parameter κ .

Measurements are accomplished in a multi-step procedure. For a given β , an ensemble of
thermalized configurations, and then ensembles of “smeared” configurations after 6 to 20 APE
smearing steps [11] (smearing factor α = 0.5) are generated. Then, El (xt), averaged over each
smeared ensemble, is determined for different values of xt , by means of (5.1). Results are fitted
with (2.2) (see Fig. 1 (right)) and the parameters Φ, µ , λ/ξν and κ are plotted versus the smearing
step (Fig. 2 and Table 1): for each parameter a plateau is eventually searched in this plot. Smearing
has been preferred to cooling, since it is safer in reducing fluctuations at finite temperature.

We remark that the present results are preliminary and refer to one β value only. After the
possible optimization of smearing factor and distance between Polyakov loops, other β values
must be considered, in the search for continuum scaling. Assuming, however, that the continuum
is reached at β = 6.1 and a plateau is formed at about 16 smearing steps, we can estimate

µ/
√

σ = 3.137(299), λ = 1/µ = 0.150(14) fm, (5.3)

which agree, within error bars, with [5], where the connected correlator of plaquette and Wilson
loop was used, together with the cooling procedure to achieve noise reduction.
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