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1. Introduction
The static inter-quark potential reflects a nontrivial structure of the QCD vacuum. The lattice

QCD simulations offer nonperturbative computation of the potential, and it is well-known that the
quark-antiquark potential at zero temperature exhibits a linear rising behavior as a function of the
quark-antiquark distance, which means that it is impossible to isolate a single quark with finite
energy and thus quarks are confined. The precise determination of the potential at long distances is
of interest for various purposes; clarifying the mechanism of quark confinement, investigating the
correspondence to the QCD string theory, applying to the heavy quarkonium spectroscopy, and so
on. Usually the expectation value of the Wilson loop is computed to extract the potential, but as
explained below, whoever computes the potential at long distances is required to adopt smearing
techniques or alternative methods to the operators, which may cause systematic errors.

In this paper, we present some results on the static potential obtained by computing the
Polyakov loop correlation function (PLCF) instead of the Wilson loop with the help of the multi-
level algorithm [1, 2]. The PLCF in the quark-antiquark system is defined by a pair of spatially
separated Polyakov and anti-Polyakov loops, which is, as explained below, easy to extract the
ground state potential once the PLCF is determined accurately. We find that the use of the multi-
level algorithm also allows us to compute the PLCF with the selected intermediate states of gluons;
while the use of partial intermediate states cannot guarantee apparent gauge invariance of the PLCF,
the functional form of the PLCF and then the static potential can be unchanged from the gauge in-
variant ones up to calculable weight factors, which indicates that all possible intermediate states
equally contribute to the nonperturbative potential. We also find that the situation is the same in the
three-quark system.

2. The Wilson loop vs. the PLCF for the static quark-antiquark potential
We consider SU(3) lattice gauge theory in four dimensions with the lattice volume L3 ×T and

the lattice spacing a, and impose periodic boundary conditions in all space-time directions.
The heavy quark potential is usually computed from the expectation value of the Wilson loop,

the trace of the path-ordered product of link variables Uµ(x), which is also expressed as

W (r, t)=L(x0=0,~x1,~x2)∗αγ{T(0,~x1,~x2)T(a,~x1,~x2) · · ·T(t−a,~x1,~x2)}αβγδ L(x0=t,~x1,~x2)βδ , (2.1)

where Greek indices take the values form 1 to 3 in the SU(3) case and repeated indices are assumed
to be summed over. L(0,~x1,~x2)∗αγ and L(t,~x1,~x2)βδ are products of the spatial link variables from
~x1 to~x2 at x0 = 0 and t, corresponding to the quark source and sink, respectively.

T(x0,~x1,~x2)αβγδ ≡U4(x0,~x1)αβU4(x0,~x2)∗γδ (2.2)

is the two-link correlator, a direct product of two temporal link variables separated by a distance
r = |~x1 −~x2|, which consists of a 9× 9 complex matrix. The two-link correlator acts on the color
states in the 3⊗ 3̄ representation of the SU(3) group |n;~x1,~x2〉αβ , which is the eigenstate of the
hamiltonian H defined by the transfer matrix in the temporal gauge, T ≡ e−Ha, and then satisfies
T(x0,~x1,~x2)αλγε |n;~x1,~x2〉αγ = e−En(r)a|n;~x1,~x2〉λε , where n is the principal quantum number. The
energies En(r) are positive, which should be common to all color components of |n;~x1,~x2〉αβ . The
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Figure 1: A product of two-link correlators, {T(x0,~x1,~x2)T(x0 + a,~x1,~x2)}αβγδ = T(x0,~x1,~x2)αλγεT(x0 +
a,~x1,~x2)λβεδ .

multiplication law of the two-link correlators between two neighboring time slices x0 and x0 + a
(see Fig. 1 for a schematic understanding) is

{T(x0,~x1,~x2)T(x0 +a,~x1,~x2)}αβγδ = T(x0,~x1,~x2)αλγεT(x0 +a,~x1,~x2)λβεδ . (2.3)

Based on the transfer matrix formalism, the expectation value of the Wilson loop is evaluated by in-
serting the complete set of eigenstates 1 = ∑∞

m=0 |m;~x1,~x2〉〈m;~x1,~x2| at time slices x0 = a,2a, ...,t−
a as

〈W (r, t)〉 =
∞

∑
n=0

wn(r, t)e−En(r) t , (2.4)

where wn(r, t) = 〈0|L(0,~x1,~x2)∗|n;~x1,~x2〉〈n;~x1,~x2|L(t,~x1,~x2)|0〉 and |0〉 denotes the vacuum. If
we pay attention to the ground state energy E0(r), which is regarded as the static potential V (r),
Eq. (2.4) is written as

−1
t

ln〈W (r, t)〉 = E0(r)−
1
t

lnw0(r, t)+O(
1
t

w1

w0
e−(E1−E0)t) , (2.5)

and thus V (r) ≡ E0(r) = − limt→∞
1
t ln〈W (r, t)〉. One may find that it is not straightforward to

extract the ground state potential from Eq. (2.5) due to the unknown weight w0 and contamination
from the excited states because t cannot be large practically with the limitation t < T/2. In order to
suppress the unwanted second and third terms in Eq. (2.5), one then adopts smearing techniques for
better overlap with the ground state to achieve w0(r, t) → 1. Otherwise it requires high simulation
cost to perform simulations with large T .

The heavy quark potential may also be extracted from the PLCF. Using the two-link correla-
tors, the operator for the PLCF is constructed as

TrP(~x1)TrP(~x2)∗ = {T(0,~x1,~x2)T(a,~x1,~x2) · · ·T(T −a,~x1,~x2)}ααγγ . (2.6)

The expectation value is evaluated by inserting the complete set of eigenstates at all time slices
x0 = 0,a, ...,T −a as

〈TrP(~x1)TrP(~x2)∗〉 =
∞

∑
n=0

wne−En(r)T , (2.7)

where w0 = 1 is guaranteed by construction, which is one of the main difference from the Wilson
loop. We thus find

− 1
T

ln〈TrP(~x1)TrP(~x2)∗〉 = E0(r)+O(
1
T

e−(E1−E0)T ) , (2.8)

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
6
9

The static potential from the selected intermediate states of gluons Yoshiaki Koma

and immediately obtain the ground state potential by V (r) ≡ E0(r) = − 1
T ln〈TrP(~x1)TrP(~x2)∗〉,

since the error terms of O( 1
T e−(E1−E0)T ) are already negligible at zero temperature. This construc-

tion is theoretically clean and the extraction of the potential seems to be quite easy. However,
the problem is that it is impossible to compute the PLCF accurately within ordinary simulations
as the expectation values are extremely small at long distances, which are easily obscured by the
statistical noise.

3. The PLCF with the multilevel algorithm
Using the multilevel algorithm, it is possible to overcome the problem of the smallness of the

PLCF. The idea of the multilevel algorithm is to compute the desired correlation function, which
may have extremely small expectation value, from the product of relatively large sublattice average
of its components, where the sublattices are defined by dividing the lattice volume into several
layers along the time direction. During the computation of the sublattice averages, the spatial
links at the sublattice boundaries are fixed. The computation of the correlation function in this
way is supported by the transfer matrix formalism and is regarded as the hierarchical functional
integral method. It has already been applied to computing not only the original PLCF [1, 2] but
also the glueball spectrum [3, 4], the flux-tube profile [5], and the relativistic corrections to the
quark-antiquark potential (field strength correlators) [6, 7], and so on.

Let us briefly explain what is done in the multilevel algorithm when computing the PLCF.
As an example, we consider a simple case that the lattice volume is divided into two sublattices
(Nsub = 2) at the time slice x0 = 0 and x0 = T/2. The number of the time slices in a sublattice
is Ntsl = T/(aNsub). We then compute the averages of {T(0,~x1,~x2) · · ·T(T/2−a,~x1,~x2)}αλγε and
{T(T/2,~x1,~x2) · · ·T(T −a,~x1,~x2)}λβεδ and construct the final operator by

TrP(~x1)TrP(~x2)∗=[T(0,~x1,~x2) · · ·T(
T
2
−a,~x1,~x2)]αλγε [T(

T
2

,~x1,~x2) · · ·T(T−a,~x1,~x2)]λαεγ , (3.1)

where [· · · ] represents taking the sublattice average. Note that fixing the spatial links at the sublat-
tice boundaries correspond to inserting two normalized fixed sources |φ1〉αβ = ∑∞

n=0 an|n;~x1,~x2〉αβ
and |φ2〉αβ = ∑∞

m=0 bm|m;~x1,~x2〉αβ at x0 = 0 and x0 = T/2, respectively, where an and bm are un-
known a priori but satisfy ∑∞

n=0 |an|2 = ∑∞
n=0 |bn|2 = 1. Then, Eq. (3.1) becomes

TrP(~x1)TrP(~x2)∗ = Tr
[
〈φ1|T(0) · · ·T(

T
2
−a)|φ2〉

][
〈φ2|T(

T
2

) · · ·T(T −a)|φ1〉
]

= ∑
αγ

∑
λε

(
∞

∑
n=0

a∗nbne−En(r)(T/2) ·
∞

∑
m=0

b∗mame−Em(r)(T/2)

)
. (3.2)

If we take the average for different fixed sources at x0 = 0 and x0 = T/2 of other independent con-
figurations, we obtain 〈TrP(~x1)TrP(~x2)∗〉 as in Eq. (2.7), since inserting the fixed sources finally
reduces to inserting the complete set.

At this point, it is interesting to notice that if T/2 is large enough such that the terms of
O(e−(E1−E0)(T/2)) are negligible, which is usually the case at zero temperature, Eq. (3.2) further
reduces to

TrP(~x1)TrP(~x2)∗ = ∑
αγ

∑
λε

|a0|2|b0|2e−E0(r)T︸ ︷︷ ︸
independent of αγλε

= 34|a0|2|b0|2e−E0(r)T . (3.3)
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In this case, the ground state potential E0(r) can be extracted even from “one” configuration. More-
over, Eq. (3.3) reads that each color component of the intermediate states “equally” contributes to
the exponential decay of the PLCF, which means that it is possible to extract the gauge-invariant
potential from the gauge-variant PLCF with selected partial intermediate states.

Note that if the terms of O(e−(E1−E0)(T/2)) in Eq. (3.2) are not negligible, one has to use large
temporal lattice volume from the beginning. When T is large enough, it is possible to start from
smaller temporal size of the sublattices (choose Nsub > 2 for Ntsl = T/aNsub). In any case, if the
ground state energy is of interest, the sublattice averaging must be carried out up to higher levels
until the terms of O(e−(E1−E0)(T/Nsub)) become negligible. Otherwise the contamination from the
excited states cannot be avoided. It means that there is a critical minimal size of aNtsl to obtain the
ground state energy. In our experience with the Wilson gauge action, we find that aNtsl ' 0.38fm is
the minimal size, corresponding to Ntsl = 3 at β = 5.8, Ntsl = 4 at β = 6.0, and Ntsl = 6 at β = 6.2.

4. Numerical results
Using the multilevel algorithm, we shall demonstrate that the PLCF and the potential can

be computed from one configuration with the gauge-variant PLCF constructed from the selected
intermediate states. We stick to the Wilson gauge action at β = 6.0 and then set Ntsl = 4.

The first result is shown in Fig. 2, which consists of the PLCF in the quark-antiquark system
on the 244 lattice (Nsub = 24/4 = 6) as a function of the number of internal sublattice updates Niupd

(left) and the corresponding potential (right). We have computed two types of the PLCF; one is the
ordinary gauge-invariant PLCF (denoted as “full”) and the other is the gauge-variant PLCF con-
structed from the diagonal components of the sublattice correlators (denoted as “diagonal”). The
expected weight factors for these PLCFs are, full : diagonal = (3Nsub−1)2 : 1 = 59049 : 1. Therefore
we have multiplied the factor 59049 to the diagonal PLCF for a direct comparison. We find that
both PLCFs reduce to the same values with increasing the Niupd. The potentials are then computed
from these PLCFs using the values of the largest number of Niupd (in this case Niupd = 100000),
which clearly lead to the same result. Note that the potential plotted here is of one configuration,
but the fitting result with the functional form V (r) = −α/r + σr + µ is consistent with that uses
more independent configurations [7].

The second result is shown in Fig. 3, which is similar to the first one but on the 164 lattice
(Nsub = 4) and we have computed three types of the PLCF; the ordinary gauge-invariant PLCF
(“full”), the gauge-variant PLCFs which are constructed from the diagonal (“diagonal”) and the
off-diagonal (“off-diagonal”) components of the two-link correlators, respectively. The expected

weight factors for these PLCFs are, full : diagonal : off-diagonal = (3T/a−1)2 : 1 :
(

2T/a+2(−1)T/a

3

)2
=

205891132094649 : 1 : 477247716. Therefore we have multiplied the factor 205891132094649
to the diagonal PLCF and 205891132094649/477247716 to the off-diagonal PLCF for a direct
comparison. Again, we find that all PLCFs reduce to the same values with increasing the Niupd.
Although the diagonal PLCF requires relatively a large number of Niupd, it is reasonable that the
diagonal PLCF is 14 orders of magnitude smaller than the full PLCF. The potentials are then com-
puted from these PLCFs using the values of the largest number of Niupd = 3060000 and are found to
be exactly the same. The first and second results strongly support our expectation that it is possible
to obtain the gauge-invariant PLCF and the static potential with the selected intermediate states.
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Figure 2: The PLCF (left) and the potential (right) in the quark-antiquark system on the 244 lattice (Nsub =
6).
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Figure 3: The PLCF (left) and the potential (right) in the quark-antiquark system on the 164 lattice (Nsub =
4).

The final result is shown in Fig. 4, in which we have extended the above idea to the three-quark
system. In this case, the PLCF consists of the “three-link correlators”,

T(x0,~x1,~x2,~x3)αβγδεζ ≡U4(x0,~x1)αβU4(x0,~x2)γδU4(x0,~x3)εζ . (4.1)

The multilevel algorithm can be applied in the same manner as in the quark-antiquark system, but
the three-link correlator requires larger computer memory as it is composed of a 9×9×9 complex
matrix. We have put the three Polyakov loops at ~x1 = (r,0,0), ~x2 = (0,r,0), ~x3 = (0,0,r), respec-
tively. Therefore, r is not immediately regarded as the distance among quarks. We have computed
the gauge-invariant PLCF (“full”) and the gauge-variant PLCF with the diagonal sublattice corre-
lator (“diagonal”). The expected ratio is, full : diagonal = (3Nsub−1)3 : 1 = 14348907 : 1, and then
we have multiplied the factor 14348907 to the diagonal PLCF. Although the diagonal PLCF is still
fluctuating at long distances, we see such a behavior that both PLCFs reduce to the same values
with increasing the Niupd, which is quite the same as in the quark-antiquark system. The potentials
are then computed from these PLCFs using the values of the largest number of Niupd = 530000.
Our result, up to r/a = 4, is comparable to the result of Takahashi et al. [8, 9], which uses the
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Figure 4: The PLCF (left) and the potential in the three-quark system on the 244 lattice (Nsub = 6).

three-quark Wilson loop with the smearing techniques, where the both potentials are normalized at
r/a = 1. The small deviation at r/a > 5 may be clarified by further simulations.

5. Summary
By employing the multilevel algorithm, we have investigated the static inter-quark potentials

in the quark-antiquark and the three-quark systems from the PLCF constructed from the selected
intermediate states. While the use of partial intermediate states cannot guarantee gauge invari-
ance of the PLCF, we have found that the functional forms of the PLCF and the static potential
are unchanged from the gauge invariant ones, which indicates that each color component of the
intermediate states equally contributes to the PLCF. In other words, there is no dominant color
component to the potential. In this sense, gauge invariance of the operator is desirable with re-
spect to maximizing the number of internal color statistics, which may help to obtain stable signals
even with the small number of internal sublattice updates. However, if the operator requires huge
computer memory which cannot be simulated with available resources, the selection of the inter-
mediate state can be a possible option from the point of view of saving the computer memory in
the multilevel algorithm.
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