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A common approach while considering confinement is to study the dominance of an Abelian

subgroup of the SU(3) gauge Links. A good way to find the Abelian component of the field is

through the Cho-Guan-De gauge invariant Abelian Decomposition, which uses a carefully chosen

direction vector n to split the gauge field into an Abelian restricted field and a remnant coloured

field. The restricted field can be further subdivided into topological and non-topological terms.

We show that there is a choice of n which allows us to exactly represent the Wilson Loop of

full QCD as a function of only the restricted Abelian field without requiring any path ordering

or additional path integrals. We present numerical evidence showing that the topological part of

the restricted field dominates the string tension. We also show that n contains certain topological

objects, which, if they exist, will be at least partially responsible for confinement. These leave

distinctive patterns in the restricted field strength, and we search for these structures in quenched

lattice QCD.
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The Gauge Invariant Abelian Decomposition Nigel Cundy

1. Introduction

We [1] seek to explain the emergence of the linear string tension in QCD by studying the Wil-

son Loop. A common approach, often achieved by fixing to a particular gauge [2], is to extract the

Abelian part of the gauge link (Abelian decomposition), projecting out the coloured, off-diagonal,

elements of the gauge link leaving just an Abelian, colour neutral field which is expected to domi-

nate confinement. It is best to respect gauge invariance by using the Cho-Duan-Ge (CDG) Abelian

decomposition [3]. The CDG decomposition extracts the components of the gauge field aligned

with NC − 1 commuting traceless colour vectors n j; our choice of n j is the main novelty of this

study. Other recent studies [4] select n (the Abelian theory must be U(1) in that work) through

additional dynamical fields which allow the authors to relate the string tensions of the Abelian the-

ory and full QCD. Instead, we maximise the Abelian symmetry so that all the possible degrees of

freedom are included. It is possible to choose a specific n j which diagonalises the Wilson Loop

and leaves the maximal U(1)NC−1 Abelian symmetry for an original SU(NC) gauge theory. This

U(1)NC−1 theory can be studied numerically and modelled theoretically. We believe that certain

topological objects contained within the colour fields can provide an explanation of confinement.

In section 2, we use a particular choice of the CDG decomposition to diagonalise the Wilson

Loop, and outline how this might be used to demonstrate a linear static potential. In section 3, we

provide numerical results supporting our analysis, and we conclude in section 4.

2. Diagonalisation of Wilson Loops

A linear static potential, V (R), is a signal for confinement. For a gauge field Aµ , V (R) may

be constructed using V (R) = − limT→∞
1
T

log〈tr W [{R,T},U ]/NC〉, where W is the R×T Wilson

Loop [5]. Consider a Wilson loop of length L = Nδσ parametrised by σ around a curve Cs, a R×T

rectangle in the x-t plane, with xµ(σ = 0) = xµ(σ = L) = sµ , where P represents path ordering,

W [Cs,U ] = lim
δσ→0

(N−1)δσ

∏
σ=0,δσ ,2δσ ,...

Uµ(σ)(x(σ)) Uµ(x) =P[e−ig
∫ x+δ σµ̂

x dx′µ Aµ ]. (2.1)

We now insert an identity operator Ir
σ = θ r

σ (θ
r
σ )

−1 between each pair of gauge links, with θ ∈

U(NC) and r an index identifying the Wilson Loop. We choose θ so that it diagonalises the gauge

links along the Wilson Loop. The index j runs over only the diagonal Gell-Mann matrices.

θ†
s W [Cs]θs = lim

δσ→0

(N−1)δσ

∏
σ=0,δσ ,2δσ ,...

θ†
σUµ(σ)(x(σ))θσ+δσ

[θ†
σUµ(σ)(x(σ))θσ+δσ ,λ

j] =0, λ j diagonal Gell-Mann matrix,∀ j,Uµ ∈Cs. (2.2)

θ is uniquely defined up to a U(1)NC transformation χ (i.e. θ → θ χ) and the ordering of the

eigenvectors. By diagonalising the gauge links on all nested Wilson Loops, we can extend this

definition of θ across the entire lattice. We now introduce new SU(NC) fields, Û and X̂ , so that

[θ†
σÛµ(σ)(x(σ))θσ+δσ ,λ

j] =0 ∀x,µ , j; Uµ(x) =X̂µÛµ ∀x,µ ; Ûµ(x) =Uµ(x) ∀x,µ ∈Cs.

(2.3)
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This allows us to express the Wilson Loop without any path ordering,

Ûµ(x) =θxe−i
∫ x+δ σµ̂

x dx′µ û
j
µ (x

′)λ j

θ†
x+δσ µ̂ ; trW [Cs,U ] =trW [Cs,Û ] = tre−ig

∮

Cs
dxµ λ j û

j
µ (x). (2.4)

We can extract the string tension from the Abelian field û (a function of θ and Aµ ). We use Stoke’s

theorem to express the line integral over the Abelian field as a surface integral.

∮

Cs

dxµ û
j
µ ,x =

∫

x∈Σ,x6∈Σ̃
dΣµν F̂

j
µν+

Ñ

∑
n=1

∮

C̃n

dxµ û
j
µ ,x; F̂

j
µν =∂µ û

j
ν −∂ν û

j
µ . (2.5)

Σ represents the planar surface bound by Cs. Σ̃n represents the Ñ regions within Σ (bound by the

curves C̃n ∈ Σ) where û is not analytic. F̂ and û are gauge invariant. Defining X0 =
1
2
(X̂ + X̂†),

iδ σ̃ û
j
µ ,x =

1

tr(λ j)2
Im
(

tr
[
λ jθ†

x X̂†
µ ,xθxθ†

x Uµ ,xθx+δ σ̃ µ̂

])

=
1

2tr(λ j)2
tr[λ jθ†

x (X̂
†
µ ,x − X̂µ ,x)θx −2iλ jδ σ̃θ†

x [X0]µ ,xgAa
µ ,xλ aθx+

2λ jθ†[X0]µ ,xθxδ σ̃θ†
x ∂σ̃ θ ]+O(δσ 2). (2.6)

We choose X̂ so that tr(λ jθ†
x (X̂µ(x)− X̂µ(x)

†)θx) = 0 and trX̂µ(x) is maximised. If the singularity

in û occurs over a small region where Aµ and X0 are smooth, the θ†∂µθ term will dominate, and
∮

Cs

dxµ ûµ(x)
j =∑

n

∮

C̃n

dσ̃ tr[λ jθ†[X0]µ ,xθxδ σ̃θ†
x ∂σ̃ θ ]+ . . . .

From the above analysis, we see that Û and X̂ are uniquely defined by the equations

Ûµ ,xn j,x+δσ µ̂Û†
µ ,x −n j,x =0 tr n j(X̂ − X̂†) =0 n j,x ≡θxλ jθ†

x .

This is a lattice representation of the continuum Cho-Duan-Ge gauge-invariant Abelian decompo-

sition [3], which is known to contain topological singularities within the colour field n.

Non-analyticities in the θ field occur when (a) the Wilson Loop has degenerate eigenvalues;

(b) Aµ is discontinuous (in the chosen gauge); or (c) the situation described below. After gauge

fixing, for a SU(2) theory, we parametrise θ using a complex Givens rotation and a U(1) term,

θ =eiaφ eid3λ 3

; φ =

(

0 eic

e−ic 0

)

; φ =

(

0 ieic

−ie−ic 0

)

. (2.7)

a, c and d3 are not gauge invariant; 0 ≤ a ≤ π/2, c,d3 ∈ R. In SU(3), we construct θ from three

Givens terms and a U(1)×U(1) matrix parametrised by d3 and d8. The arbitrary parameters d3

and d8 do not affect the field n (they can be chosen to be zero). c is ill defined at a = 0 or a = π/2.

We parametrise space-time around one of these points as

(t,x,y,z) ≡ r(cos ψ3,sinψ3 cos ψ2,sin ψ3 sinψ2 cosψ1,sinψ3 sinψ2 sinψ1), (2.8)

with r = 0 at a= π/2. In SU(2), by writing c= νnψ3 for an integer gauge-invariant winding number

νn 6= 0, and using θ†∂σ θ = e−id3λ 3[
i∂σ aφ + iλ 3∂σ d + isinacos aφ∂σ c− isin2 a∂σ cλ 3

]
eid3λ 3

, we

may integrate around a curve at fixed a = a0n surrounding the structure in F̂ to obtain

∮

Cs

dxµ ûµ(x)
j =

Ñ

∑
n=1

2πνn sin2 a0ntr[[X0]µ ,x]+ . . . . (2.9)
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If the number of structures, Ñ, within the Wilson loop is proportional to the area enclosed by the

loop, as might be expected, then this leads to an area law string tension and confinement.

We parametrise a = π
2
−G(r,ψ1,ψ2,ψ3) and c = J(ψ3) for unknown gauge-dependent func-

tions G and J. Then, we can calculate the topological (θ ) contribution H3
µν to the field strength

F̂3
µν . H

j
µν = 1

8g
trn j[∂µnk,∂ν nk]. In SU(2), with G ∼ ∂iG ≡ ∂G

∂ψi
∼ rξ ; ∂rG ∼ rξ−1 and ξ > 0

By =
1

g
sin2G

(

∂1G∂3J
yxt

r2rxyzr2
yz

︸ ︷︷ ︸

t-string

+∂2G∂3J
zt

r2rxyzryz
︸ ︷︷ ︸

t-string

)

Bx =
1

g
sin 2G

(

∂1G∂3J
t

rxyzr2

︸ ︷︷ ︸

t-string

)

Ex =−
1

g
sin2G

(

∂rG∂3J
x

rrxyz
︸ ︷︷ ︸

point

−∂2G∂3J
ryz

r2rxyz
︸ ︷︷ ︸

point

)

Bz =−
1

g
sin2G

(

∂1G∂3J
zxt

r2r2
yzrxyz

︸ ︷︷ ︸

t-string

)

Ey =−
1

g
sin2G

(

∂rG∂3J
y

rxyzr
︸ ︷︷ ︸

point

−∂1G∂3J
zrxyz

r2r2
yz

︸ ︷︷ ︸

x-string

+∂2G∂3J
xy

r2rxyzryz
︸ ︷︷ ︸

point

)

Ez =−
1

g
sin2G

(

∂rG∂3J
z

rrxyz
︸ ︷︷ ︸

point

−∂1G∂3J
yrxyz

r2r2
yz

︸ ︷︷ ︸

x-string

−∂2G∂3J
zx

ryzrxyzr
2

︸ ︷︷ ︸

point

)

. (2.10)

a µ-string is a 1-Dimensional object parallel to the µ-axis; a point is a structure where the maximum

falls at least as 1/r in all directions (for ξ = 1). After rotating the coordinate system consistent with

the overall symmetry, we find the following structures in the electromagnetic field strength:

Parametrisation Ex Ey Ez Bx By Bz

Equation (2.8) point x-string x-string t-string t-string t-string

t ↔ x point x-string x-string x-string t-string t-string

y ↔ z point x-string x-string t-string t-string t-string

t ↔ x,y ↔ z point x-string x-string x-string t-string t-string

If these topological structures exist, they will reveal themselves as points in the xt component of the

field strength, and either points, x-strings or t-strings in the other components of the field strength.

3. Numerical Results

We used quenched Luscher-Weisz [6] lattice QCD configurations. Our Lattice spacings and

lattice volumes are shown in table 1. To preserve gauge invariance, we use a stout smeared gauge

field Ũp (after a large number, p, of smearing steps) during our construction of the topological

field, M, taken from the Abelian decomposition of M̃p = θ†Ũpθ ; Ũ will not contribute to the string

tension. In figure 1 and table 2 we show results for the string tension for the gauge fields U , Û , and

M, the topological (θ ) part of Û . To save computer time, initial results used a single θ for each

Wilson Loop on a configuration, breaking the identity between trW [Cs,U ] and trW [Cs,Û ]. The Û

and M string tensions (seen in the slope of the curves) are in good agreement.

Figure 2 displays contour plots showing the distribution of the various components of the field

strength. The dominant structures appear to be points or lines in the expected directions. This
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Name Lattice size L (fm) β a (fm) #

8.0 163 ×32 2.30 8.0 0.144(2) 91

8.3 163 ×32 1.84 8.3 0.114(1) 91

8.52 163 ×32 1.58 8.52 0.099(1) 82

8.3L 203 ×40 2.30 8.3 0.112(5) 54

Table 1: Parameters for the ensembles. # is the number of configurations. L the physical spatial extent.

U Û Ũ600 M600 Ũ800 M800 Ũ1000 M1000

8.0 0.094(2) 0.116(4) 0.0273(2) 0.103(10) 0.0213(1) 0.104(8) 0.0174(1) 0.105(9)

8.3 0.0590(8) 0.095(2) 0.0185(1) 0.087(5) 0.0147(1) 0.087(5) 0.0122(1) 0.087(5)

8.52 0.0442(6) 0.077(1) 0.0149(2) 0.076(3) 0.0124(2) 0.076(3) 0.0106(2) 0.077(3)

8.3L 0.057(5) 0.099(1) 0.0179(1) 0.099(2) 0.0144(1) 0.099(2) 0.0121(1) 0.098(2)

Table 2: The string tension for the ensembles (θ fixed/configuration)
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Figure 1: The string tension calculated from (R,T) Wilson Loops on the β = 8.52 ensemble, for θ is fixed

for each configuration (left) and early results with θ recalculated for each Wilson Loop (right). Our data

where θ is recalculated is not yet good enough for a reliable extrapolation to T = ∞.
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Figure 2: Contour plots for the field strength for the x (left), y (middle) and z (right) components of the

restricted electric (top) and magnetic (bottom) fields on an X (y-axis)-T (x-axis) planar slice of the lattice.

Red indicates positive field strength, green negative field strength.
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Figure 3: The average number of nearest neighbours within a cluster for each lattice site in the cluster (left)

and the same analysis only including points within clusters extended over at least four lattice sites (right).
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Figure 4: The spatial extent of the clusters containing more than four lattice sites along the four spatial

directions for the x (left) y (middle) and z (right) components of the electric (top) and magnetic (bottom)

fields. The X axis gives the length of the cluster in a given direction; the Y axis the proportion of clusters

with that length.

is confirmed by a cluster analysis. We identify clusters as sign-coherent regions of field strength

with |F̂µν | > 1 for each µ ,ν . We then compare the size, shape and orientation of the clusters

with the model expectations of the topological objects in the field strength. In figures 3 and 4, we

investigate whether the objects of within the Abelian Field strength have the shapes expected from

the theory. Figure 3 investigates the dimensionality of the clusters by investigating the number

of nearest neighbours of each site in the cluster. Excluding the smallest clusters, the majority of

lattice sites have two neighbouring sites within the same cluster, suggesting that these objects are

one-dimensional. In figure 4 we investigate the orientations of these strings (excluding the smallest

point-like structures from the analysis, including all structures in Ex). As expected, Ey and Ez are

extended along the x-axis, By and Bz along the t-axis, with Bx extended along both the x and t axes.
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4. Conclusions

We have suggested that, by introducing a carefully tuned field, θ , it is possible to diagonalise

the gauge links within a Wilson Loop without introducing additional path integrals or dynamical

variables, giving a U(1)NC−1 Abelian theory (a CDG decomposition) which can be used to cal-

culate the string tension. This theory can be studied numerically, and modelled theoretically. As

expected, the coloured fields do not contribute to confinement. There may be certain topological

singularities within θ which contribute to the string tension, giving characteristic structures appear-

ing in the Abelian field strength tensor. We have confirmed numerically that the topological term

accounts for all of the string tension, and that the structures within the field strength have the same

dimensionality and directions as expected from the model.
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