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We explore a new computational strategy for determining theequation of state of the SU(3) Yang-

Mills theory. By imposing shifted boundary conditions, theentropy density is computed from the

vacuum expectation value of the off-diagonal componentsT0k of the energy-momentum tensor.

A step-scaling function is introduced to span a wide range intemperature values. We present

preliminary numerical results for the entropy density and its step-scaling function obtained at

eight temperature values in the rangeTc–15 Tc. At each temperature, discretization effects are

removed by simulating the theory at several lattice spacings and by extrapolating the results to the

continuum limit. Finite-size effects are always kept belowthe statistical errors. The absence of

ultraviolet power divergences and the remarkably small discretization effects allow for a precise

determination of the step-scaling function in the exploredtemperature range. These findings

establish this strategy as a viable solution for an accuratedetermination of the equation of state in

a wide range of temperature values.
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1. Introduction

The standard approach to determine the Equation of State of agauge theory on the lattice re-
quires the numerical computation of the free energy density[1]. This quantity is usually measured
by computing its derivative with respect to the bare coupling constant via Monte Carlo simulations,
and then integrating it back analytically. The quartic ultraviolet divergent term is removed by sub-
tracting the very same quantity at zero temperature. Apart from the expansion in the bare coupling
constant, this strategy requires to accommodate two very different scales at the same lattice spac-
ing: the temperatureT and the smallest inverse correlation length of the zero temperature theory.
Only this way discretization and finite volume effects can bekept under control. Although this
approach has shown to be successful at low temperature, the zero-temperature simulations needed
for the subtraction at large temperatures become quickly very expensive. This problem prevented
numerical computations to access temperatures larger thana fewTc. The situation improved with
the generalization of the method via the half-temperature subtraction [2]. However, the expansion
in the bare parameters is still needed and the simulations remain rather demanding.

In this contribution we present a new computational strategy to avoid the two-scale problem
and, at the same time, the expansion in the bare coupling. Theentropy density is extracted from
the expectation value of a local operator computed at the desired temperature, and no ultraviolet
power subtractions are needed.

The basic new ingredient is the use of shifted boundary conditions in the temporal direction [3,
4, 5]. In this set up the entropy density can be determined from the expectation value of the
off-diagonal componentsT0k of the energy-momentum tensor [5], a quantity which renormalizes
multiplicatively in the SU(3) gauge theory on the lattice. Finite volume effects are exponentially
small in(ML), whereM is the lightest screening mass of the theory andL is the linear size in the
spatial directions. At largeT, the temperature is the relevant scale in the system: the dominant
discretization effects are proportional to(aT)2, andM is proportional toT (more precisely to(gT)

or (g2T) depending on the temperature). Since the observable is local, the computational effort
is volume independent at fixed statistical errors. One can thus simulate large spatial volumes to
account for the small prefactor which enters the expressionof the screening mass, and still keep
discretization effects under control. We test here these ideas in the SU(3) Yang–Mills theory. They
can, however, be easily generalized to gauge theories with fermions like QCD.

2. Entropy density from shifted boundary conditions

The SU(3) Yang–Mills theory at finite temperature can be formulated in the Euclidean path
integral formalism by imposing on the fields periodic boundary conditions in the compact direction
up to a shiftξξξ in the spatial direction [3, 4, 5]

Aµ(L0,xxx) = Aµ(0,xxx−L0ξξξ ), (2.1)

whereAµ is the gauge field andL0 is the time extension. In the thermodynamic limit, the invariance
of the dynamics under the SO(4) group implies that the free energy densityf (L0,ξξξ ) satisfies

f (L0,ξξξ ) = f (L0

√

1+ ξξξ 2
,000). (2.2)
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Thus the free energy depends on the length of the compact direction β = L0

√

1+ ξξξ 2
= T−1 which

fixes the inverse temperature of the system, while it is independent on its orientation with respect
to the space directions. This redundancy implies that the total energy and momentum distributions
of the thermal theory are related, and interesting Ward identities (WIs) follow. In particular, one
obtains that

〈T0k〉ξξξ =
ξk

1−ξ 2
k

[

〈T00〉ξξξ −〈Tkk〉ξξξ
]

, (2.3)

where〈·〉ξξξ stands for the vacuum expectation value computed in the thermal quantum system with
shift ξξξ , andTµν is the energy-momentum tensor of the theory. For a non-vanishing shift, it then
follows that the entropy densitys(T) is given by

s(T)

T3 = −L4
0(1+ ξξξ 2

)3

ξk
〈T0k〉ξξξ , T =

1

L0

√

1+ ξξξ 2
. (2.4)

Remarkably, the entropy density can be obtained directly from the vacuum expectation value of the
off-diagonal componentT0k of the energy-momentum tensor which does not vanish since the shift
softly breaks the parity symmetry. Based on the Eq. (2.4), a step-scaling functionΣ(T, r) for the
normalized entropy density can be defined as

Σ(T, r) =
s(T ′)/T ′3

s(T)/T3 =
(1+ ξξξ ′2

)3 ξk

(1+ ξξξ 2
)3 ξ ′

k

〈T0k〉ξξξ ′

〈T0k〉ξξξ
, (2.5)

whereξξξ and ξξξ ′ are two different shifts. SinceL0 is held fixed, the stepr in the temperature is

given by the ratior = T ′/T =

√

1+ ξξξ 2
/

√

1+ ξξξ ′2. Following the approach in Ref. [7], the entropy
density at a given temperature can then be obtained by solving the recursion relation

v0 =
s(T0)

T3
0

, vk+1 = Σs(Tk, r)vk , Tk = T0 rk , (2.6)

once the entropy densityv0 is computed at temperatureT0.

3. Entropy density on the lattice

We set up the SU(3) Yang–Mills theory on a four-dimensional lattice of sizeL0 × L3 and
spacinga by discretizing the gluons with the standard Wilson plaquette action. We impose periodic
boundary conditions in the spatial directions and shifted boundary conditions along the compact
direction

Uµ(L0,xxx) = Uµ(0,xxx−L0ξξξ ) , (3.1)

whereξξξ is the shift vector andUµ(x) are the gauge links. We consider the clover formulation of
the energy-momentum tensor on the lattice [6]

Tµν =
β
6

{

Fa
µαFa

να − 1
4

δµνFa
αβ Fa

αβ

}

, (3.2)
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whereβ = 6/g2
0, andg0 is the bare coupling constant. The field strength tensor is defined as

Fa
µν(x) = − i

4a2 Tr
{[

Qµν(x)−Qν µ(x)
]

Ta
}

, (3.3)

where

Qµν(x) = Uµ(x)Uν(x+aµ̂)U†
µ(x+aν̂)U†

ν (x)

+ Uν(x)U†
µ(x−aµ̂ +aν̂)U†

ν (x−aµ̂)Uµ(x−aµ̂) (3.4)

+ U†
µ(x−aµ̂)U†

ν (x−aµ̂ −aν̂)Uµ(x−aµ̂ −aν̂)Uν(x−aν̂)

+ U†
ν (x−aν̂)Uµ(x−aν̂)Uν(x+aµ̂ −aν̂)U†

µ(x) .

T/T0 L/a L0/a β TL
1/

√
2 80 3 6.0403 13.4

1/
√

2 96 3 6.0403 22.6
1/

√
2 96 4 6.2257 12.0

1/
√

2 128 5 6.3875 12.8
1 80 3 6.2670 13.4
1 96 3 6.2670 22.6
1 96 4 6.4822 12.0
1 128 5 6.6575 12.8√
2 80 3 6.5282 13.4√
2 96 3 6.5282 22.6√
2 96 4 6.7533 12.0√
2 128 5 6.9183 12.8

2 80 3 6.7791 13.4
2 96 3 6.7791 22.6
2 96 4 7.0201 12.0
2 128 5 7.2068 12.8

2
√

2 80 3 7.0694 13.4
2
√

2 96 3 7.0694 22.6
2
√

2 96 4 7.3100 12.0
2
√

2 128 5 7.4963 12.8
4 80 3 7.4120 13.4
4 96 3 7.4120 22.6
4 96 4 7.6541 12.0
4 128 5 7.8435 12.8

4
√

2 80 3 7.7039 13.4
4
√

2 96 3 7.7039 22.6
4
√

2 96 4 7.9489 12.0
4
√

2 128 5 8.1405 12.8

Table 1: The parameters used in the numerical
study. For each parameter set, simulations with
two shifts ξξξ ′

= (1,0,0) and ξξξ = (1,1,1) have
been carried out. This corresponds to the two
temperatures:T = (2L0)

−1 andT ′ = (
√

2L0)
−1.

On the lattice translational invariance is broken
down to a discrete sub-group, and the energy-
momentum tensor has to be renormalized. The
momentum density renormalizes multiplicatively
TR

0k = ZT T0k, and its renormalization constantZT

is fixed by imposing suitable WIs [4, 5]. As a
consequenceZT depends only on the bare cou-
pling constant and, up to discretization effects, it
is independent on the volume, the temperature,
the shift parameter, etc. Ultimately which WIs
and/or kinematics yield the most accurate result
must be investigated numerically. The factorZT

cancels out in the lattice definition of the step-
scaling function

Σ(T, r) =
(1+ ξξξ ′2

)3 ξk

(1+ ξξξ 2
)3 ξ ′

k

〈T0k〉ξξξ ′

〈T0k〉ξξξ
(3.5)

which has a universal continuum limit as it stands.
In the remaining part of these proceedings we will
focus on the numerical determination of the step-
scaling function.

4. Numerical computation

We have simulated the SU(3) Yang–Mills
theory by sweeping the lattice with 1 heatbath
and 3 over-relaxation updates of all link variables.
At each value ofβ andL0/a, we have measured
〈T0k〉ξξξ for two values of the shift,ξξξ ′

= (1,0,0)

andξξξ = (1,1,1), corresponding to a step ofr =√
2 in the temperature. In order to extrapolateΣ(T,

√
2) to the continuum limit, at each temperature
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Figure 1: Continuum limit extrapolation of the entropy step-scalingfunctionΣ(T,
√

2) at the 7 temperatures
listed in Table 1. The temperature increases from top to bottom. The dashed lines correspond to linear fits
of the numerical data.

we have collected data at three different values of the lattice spacingL0/a = 3, 4, and 5; runs at
L0/a = 6 are currently in progress to have a better control on the systematics due to the extrapola-
tion. We have measuredΣ(T,

√
2) at 7 temperatures in the rangeT0/

√
2–4

√
2T0, with the values

separated by steps of about
√

2 to match the value ofr. Our reference temperature has been fixed
to T0 = L−1

max, whereLmax is taken from Ref. [8]. It corresponds toT0 ≃ 1.802Tc, whereTc is the
critical temperature computed in Ref. [9]. In the first threesteps (k = −1,0,1) the value ofβ of
each run has been fixed fromr0/a, by requiring thatLmax/r0 = 0.738(16) [11]. For each pair of
stepsk = 2 j, 2 j +1, with j ≥ 1, we interpolate quadratically in ln(L/a) each set of data at constant
ḡ2(L j) in Table A.1 of Ref. [7] supplemented by the corresponding data in Table A.4

β = a j +b j ln
(L

a

)

+c j ln
2
(L

a

)

, (4.1)

and we fixβ by requiring thatT2 j a = a/L j andT2 j+1a =
√

2a/L j . The β values obtained are
reported in Table 1, together with the spatial and time extent of the lattices simulated. To keep
finite volume effects below the statistical errors, we have chosenTL≥ 12. At each coarser lattice
spacing, we have also simulated a smaller volume to verify that finite volume effects are below
the statistical errors. Having large lattices does not increase the cost, since the latter is volume
independent thanks to the locality of the observable.

5. Results and conclusions

The step-scaling function in the free theory,Σ0(T,
√

2), can be computed analytically on the
lattice. It has small discretization effects of the order ofa few % in the range ofL0/a we are

5
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Figure 2: The temperature dependence of the entropy step-scaling function in the continuum limit. Error
bars take into account statistical errors only. The dashed line is an interpolation of the points to guide the
eyes.

interested in [5]. This fact is confirmed in the interacting theory by our preliminary results shown
in Fig. 1, where the difference

Σ(T,
√

2) = Σ(T,
√

2)− (Σ0(L0)−1) , (5.1)

is plotted as a function of(a/L0)
2. The residual discretization effects inΣ(T,

√
2) are at the per-

mille level already atL0/a= 3. The linear extrapolation in(a/L0)
2 provides a satisfactory fit of the

numerical data, as shown by the dashed lines in the plot. Whenthe data atL0/a = 6 will become
available, we will be able to quantify also the systematics due to the continuum limit extrapolation.
At that point it may be useful to attempt a global fit of all datapoints by parameterizing the coeffi-
cient of the discretization effects. In Fig. 2 we plot the continuum limit values of the step-scaling
function versus the temperature, where the errors are statistical only. The temperatures at which the
step-scaling function has been measured are not always precisely related by a factor

√
2. However,

by interpolating the results of the step-scaling function,the step
√

2 in the temperature can be accu-
rately enforced and the temperature dependence ofs(T)/T3 can be reconstructed. For the sake of
the presentation, in the Fig. 3 we show the temperature dependence ofs(T)/T3 obtained from the
entropy step-scaling function by fixing the overall normalization from the results for the entropy
density atT = 4.1Tc published in [3]. The statistical uncertainty on that measurement dominates
the error bars. We expect to improve significantly the accuracy of these results onceZT will be
fixed from the WIs. A first step in this direction has already been taken at this conference [12].

Our preliminary results establish the strategy followed inthis work as a viable and efficient
solution for determining accurately the equation of state in a wide range of temperature values. The
cost of these simulations is moderate, as proved by the fact that all computations presented here
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Figure 3: The normalized entropy density as a function ofT/Tc. The dashed line is the Stefan-Boltzmann
resultsSB/T3 = 32π2/45.

have been done using a few millions of core hours on a BG/Q. Simulations to properly quantify the
systematic errors due to the continuum limit extrapolationare underway.
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