
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
9
4

Stable and quasi-stable confining SU(N) strings in
D = 2+1.

Andreas Athenodorou ∗

Swansea University, Singleton Park, Swansea, SA2 9GX, UK &
University of Cyprus, Nicosia, CY-1678, Cyprus
E-mail: athenodorou.andreas@ucy.ac.cy

Michael Teper
University of Oxford, Rudolf Peierls Center for Theoretical Physics, 1 Keble Road, OX1 3NP,
Oxford, UK
E-mail: m.teper1@physics.ox.ac.uk

We investigate the low-lying spectrum of closed confining flux-tubes that wind around a spatial

torus inD = 2+ 1 and carry flux in different representations ofSU(N). We focus on our most

recent calculations forN = 6 andβ = 171, where the calculated low-energy physics is very

close to the continuum and large-N limits. We investigate the adjoint,84, 120, k = 2A, 2S and

k = 3A, 3M, 3S representations and show that the corresponding flux-tubesdo exist. Similarly

to the results for the fundamental representation, the ground state of a flux-tube with momentum

along its axis appears to be well described by Nambu-Goto allthe way down to very short tubes.

In contrast, excited states have much larger deviations from Nambu-Goto. We discuss whether

these states are non-string-like and associated with excitations of massive flux-tube modes.
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1. Introduction
In 2+1 dimensionalSU(N) gauge theories and in the confining phase, the flux-tube whichjoins

colour sources in the fundamental representation for largeseparationsl looks like a thin string.
The spectrum of such a long flux-tube should be calculable in the framework of an effective string
action. Recently, remarkable progress in determining the universal terms of this effective string
action [1] has shown that the large-l spectrum is close to the Nambu-Goto ‘free string’ spectrum.
At the same time, and more surprisingly, numerical lattice calculations [3, 4, 5] have shown that
the spectrum of the confining flux-tube at small to medium values ofl is also remarkably close to
Nambu-Goto. The very recent and remarkable work in [2] has begun to understand this is terms of
the approximate integrability of the inter-phonon interactions.

In this work we extend our recent calculation [3] of the fundamental flux-tube spectrum,N= 6
andβ = 171 to colour representations higher than the fundamental.More specifically we inves-
tigate cases where the flux-tube is stable for all lengths andcases where it is not; these include
representations withN-ality k= 0,1,2,3. As before we focus onSU(6), where the theory is close
to the large-N limit for a number of low-energy quantities. We have performed our calculations
at a fixed lattice spacing which is small enough for many of thecorrections to be negligible. Our
goal in this work is to investigate whether Nambu-Goto provides a good description for string-like
flux-tube states in colour representations higher than the fundamental and whether these spectra
include supplementary non-string-like states associatedto excitations of massive flux-tube modes.

We begin our investigation with flux-tubes which would emanate from charges in thek = 2
antisymmetric (2A) and symmetric (2S) irreducible representations arising from the tensor product
of two fundamental colour charges. Subsequently, we move tothek= 3 antisymmetric (3A), mixed
(3M) and symmetric (3S) irreducible representations arising from the tensor product of three fun-
damental colour sources. Next we consider thek= 0 adjoint flux-tube emanating from the product
of a fundamental and an antifundamental source. Finally, weprobe thek = 1 representations84,
120 arising from the product of two fundamental and an antifundamental source.

2. Expectations
We focus on the spectrum of closed flux-tubes that wind arounda spatial torus of lengthl . In

order to avoid any finite volume corrections we make the transverse and temporal tori,l⊥ and lt
respectively, large enough. As the flux-tube gets shortenedat some point one confronts the finite
volume transition at lengthlc = 1/Tc (Tc the deconfining temperature) below which the flux-tube
dissolves. SinceTc is of the order of

√σ f our flux-tubes have lenghtsl > 1/
√σ f .

The flux-tubes we will study have non-zero longitudinal momentum winding along the flux
with value 2πq/l andq= 0,1,2. One can think that in the large-N limit and, thus, in absence of
handles and branchings the worldsheet has a topology of a cylinder. The simplest action one can
consider, in this case, is just the area of the world sheet swept by the propagation of the string in a
flat space-time; in other words the Nambu-Goto action [6]. This model is self-consistent quantum
mechanically only inD = 26 dimensions but it is expected that, for any arbitraryD, this model can
be used as an effective low energy field theory for long enoughstrings. The Nambu-Goto energy
spectrum for the closed string inD = 3 is given by the following expression:

ENL,NR(q, l) =

{

(σR l)2+8πσR

(

NL +NR

2
− 1

24

)

+

(

2πq
l

)2
}

1
2

(2.1)
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HereσR is the string tension at colour representationR. The energy contribution of the mass-less
phonons propagating along the string is encoded inNL = ∑k nL(k)k and NR = ∑k nR(k)k where
nL(R)(k) is the number of left(right) moving phonons of momentum|p| = 2πk/l . The difference
of the occupation numbersNL andNR is related to the longitudinal momentum through the level
matching constraintNL−NR= q. Finally, the parity of a state is given byP= (−1)number o f phonons.
3. Lattice Calculation

Our gauge theory is defined on a three-dimensional Euclideanspace-time lattice that has been
toroidally compactified withLx × L⊥ × LT sites with l = aLx; l⊥ = aL⊥ and lT = aLT . For the
spectrum calculation we perform Monte-Carlo simulations using the standard Wilson plaquette
actionSW = β ∑P

[

1− 1
NReTrUP

]

. The bare couplingβ is related to the dimensionful couplingg2

through lima→0 β = 2N/ag2. In the large–N limit, the ’t Hooft couplingλ = g2N is kept fixed. The
simulation we use combines standard heat-bath and over-relaxation steps in the ratio 1 : 4. These
are implemented by updatingSU(2) subgroups using the Cabibbo-Marinari algorithm.

We calculate energies from the time behaviour of correlators of suitable operators{φi}, such
asCi j (t) = 〈φ†

i (t)φ j(0)〉 = 〈φ†
i e−Hant φ j〉 = ∑kcikc⋆jke−aEknt . We project onto loops of flux closed

around thex-torus. Hence, we use operators that wind around thex-torus. The simplest such
operator is the Polyakov loopφ(ny,nt) = TrR{lp(ny,nt)} with lp(ny,nt) = ∏Lx

nx=1Ux(nx,ny,nt).
Here we have taken the product of the link matrices in thex-direction, around thex-torus and the
trace is taken in the desired representationR. Carrying out the tensor product decomposition for
each irreducible representationR we obtain that TrAdj{lp}= Tr{lp}Tr{l†

p}−1, Trf {lp}= Tr{lp},

Tr84(120){lp}= 1
2

[

{Tr{lp}}2− (+)Tr{l2
p}
]

Tr{l†
p}−Tr{lp}, Tr2A(2S){lp}= 1

2

[

{Tr{lp}}2− (+)Tr{l2
p}
]

,

Tr3A(3S){lp}= 1
6

[

{Tr{lp}}3− (+)3Tr{lp}Tr{l2
p}+2Tr{l3

p}
]

and Tr3M{lp}= 1
3

[

{Tr{lp}}3−Tr{l3
p}
]

.
In addition we also use many other winding paths, as listed inTable 2 of [3], and also we smeared
and blocked theSU(N) link matrices. Using all these paths we project onto different longitudinal
momenta and parities keeping the transverse momentum equalto p⊥ = 0. Subsequently we per-
form a variational calculation of the spectrum, maximising〈e−Ht〉 over this basis. This provides us
with an ordered set of approximate energy eigenoperators{ψi}. We then form the correlators of
these,〈ψ†

i (t)ψi(0)〉, and extract the energies from plateaux in the effective energies.
4. Results
4.1 Fundamental Representation

In our previous work [3] we performed calculations inSU(6) for the closed flux-tube spec-
trum on the same lattices, and at the same coupling as for thiswork. There we observed that the
absolute ground state is very accurately described by the free string prediction in Equation (2.1),
with a correction only becoming visible forl

√
σ f . 2. The lightest states withq 6= 0 also showed

no visible correction to Nambu-Goto down tol
√

σ f ∼ 1.5. While other low-lying excited states
typically show larger corrections, these typically becomeinsignificant at values ofl that are much
smaller than required for the expansion of Equation (2.1) inpowers of 1/l2σ to become convergent.
Finally, we see no evidence for any non-stringy massive modes.

4.2 k= 2 Antisymmetric and Symmetric Representations
In the k = 2 sector we focus on the totally antisymmetric, 2A and the totally symmetric, 2S

representations. The lightestk = 2 flux-tube is purek = 2A and it is lighter than two fundamental
flux-tubes; thus it is stable. In Figure 1(a) we provide the results for theq= 0,1,2 ground states.
The pure Nambu-Goto prediction appears to fit very well thesestates. For the absolute ground
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state (q = 0) the expansion of the Nambu-Goto prediction for the energyE0,0(0, l) in powers of
1/l2σ converges right through the range ofl where we have calculations all the way down to
l
√

σ = π/3 ∼ 1.1 < lc
√

σ . We see that the free string expression is good all the way down to
l
√

σ2A ∼ 2 which is close to the deconfining length. In addition aO(1/l7) correction can describe
the deviations from Nambu-Goto forl

√
σ2A ≤ 2.

On the other hand the spectrum of 2A excited states withq = 0 appears to suffer from large
deviations from the Nambu-Goto free-string expectations.We plot, in Figure 1(b), the four lightest
P = + states, and the two lightestP= − ones, as well as the predictions of Nambu-Goto for the
lowest few energy levels. In Nambu-Goto the first excited state, like the ground state, is non-
degenerate with one left and one right moving phonon with momentap = ±2π/l while the next
energy level has four degenerate states with the left and right moving phonons sharing twice the
minimum momentum. This can be carried by one or two phonons, thus, two of these states have
P = + and two haveP = −. The first excited state has large deviations from the Nambu-Goto
curve but appears to approach the string prediction. This means that it is either asymptoting to that
curve or it is just crossing it. For the next excited level, the observed excited states are far from
showing the Nambu-Goto degeneracies and far from the Nambu-Goto predicted energies, even for
the largest values ofl

√
σ . These large discrepancies raise the question whether these states are

string like or associated with some massive modes; this is answered in the next section.
We turn now to the 2S representation. The associated states are expected to be heavier than

the corresponding 2A states and, thus, unstable with larger statistical errors.In Figure 1(c) we
show the ground states withq= 0,1,2. Just as fork= 2A the energies are remarkably close to the
Nambu-Goto predictions. Although unstable, the absolute ground state possess extended plateaux
very different from the decay thresholds. In contrast tok= 2A, the situation with the excitedq= 0
states is however much worse and we are unable to extract the corresponding energies.
4.3 k= 3 Antisymmetric, Mixed and Symmetric Representations

In the k = 3 sector we focus on the totally antisymmetric, 3A, mixed, 3M, and totally sym-
metric, 3S representations. Their string tensions are known from previous work to be close to the
Casimir scaling, thus, we know thatk= 3A is stable, 3M nearly stable and 3Shighly unstable.

In Figure 2(a) we plot the lightest energies ofk= 3A flux-tubes withq= 0,1,2. Just as for the
correspondingk = 2 flux-tubes, we see excellent agreement with Nambu-Goto allthe way down
to l ∼ lc. The relevant asymptotic decay states are heavier than thek = 3A states demonstrating,
thus, their stability. Turning now to the excited states forq= 0 we observe that their qualitatively
behaviour resembles that fork= 2A. Namely, the excited states suffer with large deviations from
Nambu-Goto predictions, raising the question whether these states are string like or associated with
excitations of massive flux-tube modes.

We focus now on the heavierk = 3M states. We plot in Figure 2(b) the ground states with
q= 0,1,2. Once again these particular states agree very well with Nambu-Goto. We also observe
that their instability is not enough to affect the extraction of the states using effective mass plateaux.
However, theq= 0 excited states are very unstable and we are unable to identify useful plateaux.

Thek= 3Sstates are much heavier and we can only estimate energies fortheq= 0,1 ground
states; these are presented in Figure 2(c). Again we see rough agreement with Nambu-Goto.

4.4 k= 0 Adjoint Representation
Old calculations [7] provide some evidence that such flux-tubes exist with string tension ap-
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Figure 1: (a): k= 2A ground states withq= 0,1,2. (b) Energies of lightestk= 2A q= 0 states. (c) k= 2S
ground states withq = 0,1,2. P = + states are represented by◦, andP = −, by •. Solid red curves are
Nambu-Goto predictions. Vertical line denotes location of‘deconfinement’ transition.

proximately proportional to the Casimir Scaling. Adjoint flux-tubes can be screened down to the
vacuum by gluons but this is suppressed by 1/N2. Hence one expects to observe such flux-tubes
at large enoughN. An adjoint flux-tube is in general heavier than a pair of fundamental and anti-
fundamental flux-tubes and can decay into these (for not so largeN andl ).

In Figure 3(a) the energies of the lightest adjoint flux-tubes withq= 0,1,2 show that Nambu-
Goto provides a remarkable description all the way down tol ∼ lc. The decay thresholds are
indicated (dashed lines) and we see that the decay phase space is small, raising the hope that the
decay widths will be negligibly small. Concerning the excitation spectrum, we could not identify
well-defined excited states withq= 0. This is somehow reasonable since these states would have
a very large phase space for decay into a pair of fundamental and antifundamental flux-tubes.
4.5 k= 1 84 and 120 Representations

Here we study flux-tubes carrying flux in thek= 1 84 and120 representations. Such flux-tubes
can mix with single fundamental flux-tubes, but this is large-N suppressed and we, thus, ignore this
possibility. Nevertheless, the decay/mixing with 3 (anti)fundamental flux-tubes and with ak= 2A
and an antifundamental flux-tube is not large-N suppressed. For84 in Figure 3(b) we observe that
the agreement with Nambu-Goto is, once again, remarkably good for q= 0,1 and quite good for
q= 2. The excited states are very massive and it becomes difficult to identify plausible plateaux.

In Figure 3(c) we plot the ground state energies of flux-tubesin the 120 representation for
q= 0,1. Once again we observe that Nambu-Goto provides an adequate description. The120 string
tension is large, prohibiting us from extracting energy mass plateaux forq= 2 and for excitations
with q= 0.
5. Stringy or Massive? - Heuristic investigation

We expect bound states of fundamental flux-tubes to have a low-lying excitation spectrum that
contains clear signatures of the binding scale. Our cleanest spectra in this paper are fork= 2A and
k = 3A so we shall focus on these. So does thek = 2A(3A) q= 0 spectrum shown in Figure 1(b)
reveal any massive modes that are additional to the stringy excitations which, at largel , tend to the
Nambu-Goto curves? Since the low-lying excitation spectrum of fundamental flux tubes appears to
contain only stringy states, it is interesting to compare itwith ourk= 2A spectrum. The immediate
question this comparison raises is whether the first excitedk= 2A state might be a massive mode
with the second excited state being the first excited stringymode. If this state is an approximate
Nambu-Goto-like string excitation then we would expect itswave-functional to be similar to that
of the first excitedk= 1 state, which we have good reason to think of as being stringy.
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Figure 2: (a): k = 3A ground states withq= 0,1,2. (b) k = 3M ground states withq= 0,1,2. (c) k = 3S
ground states withq = 0,1. P = + states are represented by◦, andP = −, by •. Solid red curves are
Nambu-Goto predictions. Vertical line denotes location of‘deconfinement’ transition.
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Figure 3: (a): Adjoint ground states withq= 0,1,2. (b) 84 ground states withq= 0,1,2. (c) 120 ground
states withq= 0,1. P= + states are represented by◦, andP=−, by •. Solid red curves are Nambu-Goto
predictions. Vertical line denotes location of ‘deconfinement’ transition.

The comparison is made as follows. Let{φi ; i = 1, ...,no} be our set of winding flux tube
operators. When we perform our variational calculation over a basis in representationR, we
obtain a set of wavefunctionals,Φn

R
which can be written as linear combinations of our basis

operators TrR(φi) such asΦn
R

= ∑no
i bn

R,icR,iTrR(φi) ≡ ∑no
i bn

R,iTr′
R
(φi). The coefficientscR,i

have been chosen so that they satisfy the normalisation condition: 〈Tr′†
R
(φi(0))Tr′

R
(φi(0))〉 = 1.

This is to ensure that the comparison between the coefficients bn
R,i , which encode the “shape” of

the state corresponding to the wavefunctional, of two different representationsR can be mean-
ingful. We, therefore, make the substitutionΦn

R
= ∑no

i bn
R,iTr′

R
(φi) → Φ̃n

R
= ∑no

i bn
R,iTr′f (φi) in

order to compare an excited or ground statek = 1 andR = 2A wavefunctionals by comparing
Φ̃n

R
with Φn

f for the fundamental representation. This can be quantified by calculating the over-

lap On′,n(R = 2A) = 〈Φn′†
f Φ̃n

R
〉

〈Φn′†
f Φn′

f 〉1/2〈Φ̃n†
R

Φ̃n
R
〉1/2

. Examples of these overlaps are presented in Figure 4.

These provide us with a measure of the similarity between theoriginal stateΦn
2A and the stateΦn′

f

for q = 0. For the ground state we observe an overwhelming similarity (∼ 100%) between the
associated wavefunctionals fork = 2A and f . Turning now on the first excited statek = 2A we
find that by far the largest overlap is indeed on the first excited fundamental with a very small
overlap onto the 2nd excited stringyf state. Hence, this state is definitely not some new massive
mode excitation. Concerning the next twok = 2A excitations, while the dominant overlap is onto
the corresponding fundamental excited state, there is a large projection on other states as well. It
certainly appears possible that some new massive mode either dominates or is mixed into one or

6
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Figure 4: Overlap, ofk = 2A ground, first, second and third excitedq = 0 states onto the 20 lowest-lying
fundamental states forl = 52a

both of these states. Similar results have been obtained fork= 3A.

6. Conclusion
We have calculated the low-lying spectrum of closed flux-tubes in various representations of

colour. One of the aims of this project was to compare the resulting spectrum to simple effective
string actions, just as we did in our previous work on flux-tubes in the fundamental representation
of colour. Flux-tubes in irreducible representations higher than the fundamental can be thought
of as bound states of fundamental and antifundamental flux-tubes. Hence the massive excitation
modes related to that binding might leave their signature inthe spectrum. While in the case of
fundamental flux-tubes we found no sign of such states we hoped that we would find something
different here.

Our results show clearly that the absolute ground state and the lightest states with non-zero lon-
gitudinal momenta are accurately described by the free string expression shown in Equation (2.1).
Our results also suggest that the lightest twop= 0 states of the higher than the fundamental flux-
tubes consist only of string-like states. For a more detailed description of this project you can look
at the longer write-up [8].
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