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1. Introduction

Inclusive QCD scattering processes in the presence of a hard scale, are nowaday described with
impressive accuracy through the framework of collinear factorization. Turing on the other hand to
more exlcusive observables, such as the transverse momentum distribution of a hard final state, its
power is becomes more and more limited. Considering for definitness the inclusive production of
a Z-boson, one finds that collinear factorization provides a reliable estimate of the cross-section,
even if one limits oneself to partonic cross-sections at leading order (LO) in the strong coupling
αs. The transervers momentum distribution of the Z-boson is on the other hand within collinear
factorization at LO obtained as delta function fixed at zero transverse momentum pT . While the
observed distribution can be recovered through the inclusion of higher order corrections, generating
finite pT through the emissions of additional partons into the final state, the effectivness of the
approach, present at the inclusive level, is lost.

A natural solution to this problem is to re-formulate factorization into partonic coefficent and
parton distribution functions (pdfs) such that correct or at least well approximated kinematics is
already re-covered at Born-level. In particular this requires to extend the framework of collinear
factorization and to consider pdfs which carry information about the transverse momentum of par-
tons inside the nucleon.

A possible starting point for the investigation of such distributions is provided by the high
energy limit of QCD. For the above example of Z-production, this corresponds to the region of
phase space where the hierachy

√
s�MZ � ΛQCD (1.1)

holds, with
√

s the center of mass energy of the scattering process. In this limit of phase space,
perturbative QCD scattering amplitudes are known to factorize into convolutions of impact factors
and a universal Green’s function, which achieves the resummation of high energy logarithms lns,
see [1]. For a recent application of high energy factorization at NLO to DIS see e.g. [2]. With the
convolution integral of high energy factorized cross-sections given in terms t-channel transverse
momenta, such a formalism allows formulate Transvers Momentum Dependent (TMD) factoriza-
tion in the presence of the hierachy Eq. (1.1), see [3, 4].

The current formulation of TMD pdfs, derived from high energy factorization, is mainly re-
stricted to the quenched approximation, where only gluon and valence quark distributions are in-
cluded [5, 6, 7]. This is at first natural, as the t-channel of QCD scattering amplitudes is at high
center of mass energies dominated by gluon exchanges. That such a treatment is not entirely sat-
isfactory, becomes immediatly apparent if one turns to the the description of quark induced final
states which are sensitive to small x resummation. This is for instance the case for the production
of Z-bosons at LHC, both at forward and central rapidities. In such a case, dominant contributions
from the small x enhanced seaquark can be only included through O(αs) (forward) and O(α2

s )

matrix elements, eliminating in this way one of the main initial motivations for the development of
TMD factorization.

In this contribution we present a first step to address this issue by including sea quark contri-
butions and examine forward Drell-Yan production. For further details we refer to [8].
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2. Definition of a TMD sea quark distribution and off-shell qq∗→ Z coefficient

The starting point for our definition of a TMD sea quark distribution is given by the the off-
shell TMD gluon-to-quark splitting function [4],

Pqg

(
z,

kkk2

∆∆∆
2

)
=

(
∆∆∆

2

∆∆∆
2 + z(1− z)kkk2

)2[
Pqg(z)+TR4z2(1− z)2 kkk2

∆∆∆
2

]
. (2.1)

Here ∆∆∆ = qqq− z · kkk with kkk and qqq transverse momenta of the off-shell gluon and quark respectively,
while z is the fraction of the ‘minus’ light cone momentum of the gluon which is carried on by the t-
channel quark. Pqg = TR

(
(1− z)2 + z2

)
denotes the LO DGLAP gluon-to-quark splitting function.

Although evaluated off-shell, the splitting probability is universal.
Unlike treatments which describe the gluon-to-quark splitting in terms of the LO DGLAP

splitting function Pqg(z), see e.g. [9], the TMD splitting function takes into account the entire tower
of kkk2/∆∆∆

2 corrections, which are suppressed in the strict collinear limit. The transverse momentum
of the sea quark is in this way, after combination with the TMD gluon distribution, obtained as
a consequence of subsequent branchings at small x, with no strong ordering in their transverse
momenta.

⊗⊗⊗

(a) (b)

Figure 1: (a): If the vector boson is produced in the forward region, the sea quark density becomes sensitive
to multiple small x enhanced gluon emissions, leading to a kT -dependent gluon density (b): Schematic
factorization of the partonic qg∗→ Zq process of a) into the g∗→ q∗ splitting and the qq∗→ Z coefficient.

To relate the TMD splitting kernel to forward vector boson production, we analyze the flavor
exchange process g∗q→ Zq, see Fig. 1. Within high-energy factorization, a factorized description
of this process can be obtained within the “reggeized quark” calculus [10, 11]. The latter extends
the effective action formalism [12], currently explored at NLO [13], see also [14], to amplitudes
with quark exchange in terms of effective degrees of freedom, the so-called reggeized quarks [15,
16]. The use of the effective vertices [10, 11] ensures gauge invariance of the coefficients relevant
to perform the high-energy factorization [3, 4] for vector boson production, despite the off-shell
parton.

Due to strong ordering of ‘plus’ and ‘minus’ light-cone momenta present in any high energy
factorized amplitude, reggeized quark calculus leads for the g∗q→ Zq process to a rather crude
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approximation to the g∗→ q∗ splitting function. Indeed, for Eq. (2.1) the strong ordering require-
ment corresponds to the limit z→ 0, which yields Pqg = TR. It is however possible [8] to relax this
kinematic restriction and to keep z finite, while maintaining the gauge invariance properties of the
original vertex. For the g∗→ q∗ splitting this yields then precisely the splitting function Eq. (2.1).

On the other hand, in the qq∗→ Z coefficient the high energy limit sets the ‘minus’ component
of the quark momentum to zero. It proves to be possible to relax the ordering prescription also in
this case. It is thus interesting to investigate the effect of these kinematic corrections, which are
subleading in the collinear and high energy limits. In [8] we express the off-shell coefficient for the
Z-boson cross section as

σ̂qq∗→Z =
√

2GFM2
Z(V

2
q +A2

q)
π

Nc
δ (zx1x2s+T −M2

Z). (2.2)

Here the variable T parametrizes the off-shellness of the t-channel quark. In the collinear limit T →
0 so that Eq. (2.2) agrees with the lowest order qq→ Z coefficient. For the general off-shell case,
T interpolates between the squared transverse momentum of the off-shell quark, if strong minus
momentum ordering is fulfilled, and modulus of the four-momentum transfer, if this condition
is relaxed. Correspondingly, the qg∗ → qZ cross section is expressed in terms of convolutions
in transverse momentum and four momentum transfer [8] respectively. A numerical comparison
of these two different realizations of off-shell factorization has been provided inr [8]. It reveals
that for small |∆∆∆|, the differences between t and kT -factorized expressions are numerically small,
and both expressions are close to the full result; as |∆∆∆| increases, deviations due to the kinematic
contributions by which the two expressions differ become non-negligible, and that the t-factorized
expression gives a better approximation to the full result.

Future extensions of the above results will address the implementation of the result [17] into
the Monte Carlo event generator CASCADE [18]. For a related study at partonic level which ad-
dresses Z + jet production at high center of mass energies level see also [19]. Another direction
of research addresses the extension to central Z production, for which the qT factorized coefficient
with two off-shell quark has been present in [20].
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