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1. Introduction

Quantum Chromodynamics (QCD) is a theory which is used to setup the initial conditions
for the collisions at the LHC as well as to calculate properties of hadronic observables. In order to
apply perturbative QCD to scattring process one decomposesthe scross section into long distance
part, called parton density, and hard matrix element. In particular here we will focus on high
energy factorization [1, 2]. The evolution equations of high energy factorization resum logarithms
of energy accompanied by a strong coupling constant, i.e. terms proportional toαn

s lnms/s0. This
framework applies if the total energy of a scattering process is much bigger than any other hard
scale involved in a scattering process.
With the LHC one entered into a region of phase space where both the energy and momentum
transfers are high and partons form a dense system allowing in principle for parton saturation [1].
Recently a framework has been provided in [3, 4, 5] where bothdense systems and hard processes
at high energies can be studied (for another approach to thisproblem we refer the Reader to [6]).
In the following we report on analysis of equation proposed in [3] and extraction of hard scale
dependent saturation scale as performed in [7].

2. The KGBJS evolution equation

2.1 Hard emissions approximation and running coupling effects

The KGBJS equation in low x limit reads1:

E (x,k, p) = E0(x,k, p) (2.1)

+

∫ x0

x

dw
w

∫ ∞

0

dq2

q2

∫ π

0

dφ
π

θ (p−zq)Pgg(z,k,q)E
(

w,k′,q
)

− 1
πR2

∫ x0

x

dw
w

θ(p−zk)Pgg(z,k,k)E
2(w,k,k)

The momentum vector associated withi-th emitted gluon is

qi = αi pP+βi pe+qt i. (2.2)

The variablep in (2.1) is defined viaξ̄ = p2/(x2s) where 1
2 ln(ξ̄ ) is a maximal rapidity which

is determined by the kinematics of hard scattering,
√

s is the total energy of the collision and
k′ = |kkk+qqq|, ᾱ =Ncαs/π. We also definek≡ |k|. The momentumq is the transverse momentum of
the emitted gluon. The form factor∆ns accompanying the 1/z pole accounts for angular ordering.
We use its form as proposed in [9]:

∆ns(z,k,q) = exp

(

−ᾱs ln
z0

z
ln

k2

z0zq2

)

(2.3)

1In the present paper we are going to solve the equation in the approximate form where the eventual problem
observed in [8] does not show up. This problem will be addressed in the future.
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Figure 1: Schematic illustration of kinematical variables used in the KGBJS equation

wherez0 =
k
q for z< k

q < 1 and outside the interval it assumes the bounding values,z0 = z when
k
q < z andz0 = 1 when k

q > 1. wherez= x
w under both of the dw integrals (from now on when we

will use the KGBJS acronym we will refer to equation (2.1). The splitting function, with running
αs following [9], is simplified to:

Pgg(z,k,q) = ᾱs(k
2)

∆ns(z,k,q)
z

. (2.4)

The parameter characterizing the target is chosen to beR= 10/
√

π and the starting point of evo-
lution is chosen to bex0 = 10−2. The running coupling corrections were included via the oneloop
formula. The initial condition we choose to be:

E0(x,k, p) =
GeV

k
e

ᾱs(k2) ln x0
x ln k2

µ2 . (2.5)

The extrax-dependent term is motivated by the resummation procedure,its role is to attenuate the
gluon density with decreasingx. As we see on Fig. (2) showing thex dependence of solutions
at smallp considered form of the initial condition leads to falling distribution of the CCFM and
KGBJS equations. This is not the case for the BK equation as weobserved in [7]. The particularly
interesting is the behavior of the CCFM and the KGBJS aequations as a function of hard scale
related variablep. The Fig. (3) shows that the solution of the equations is a constant function of
the p variable as it is larger than transversal momentum of gluon.This effect can be understood by
investigating theθ(p− zq) function in the considered equations. If the variablep is larger thank
then the theta function sets to one and the angular ordering is relaxed. This has interesting impli-
cations for the saturation scale generated by the KGBJS equation. The plots on Fig. (2) compare
solutions of CCFM and KGBJS. We see the damping of the gluon density due to nonlinearity in
case of KGBJS equation as we go towards lowx and lowk values.
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Figure 2: Comparison of solutions of the KGBJS and CCFM equations.
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Figure 3: Hard scale dependence of the CCFM and KGBJS equations.

3. Saturation of the exclusive gluon distribution

To shed light on the importance of nonlinear corrections in the KGBJS, we consider contour
lines of the relative difference between solutions:

β (x,k, p) =
|ECCFM(x,k, p)−EKGBJS(x,k, p)|

ECCFM(x,k, p)
. (3.1)

The traditional saturation scaleQs, i.e. transversal momentum for which the effects of nonlinearity
are noticeable, we define as:

β (x,Qs(x, p), p) = const. (3.2)

The quantity defined above, as observed in [10], has somewhatdifferent slope compared to the
saturation scale defined as a scale where the dipole amplitude is 1/2. However, as we see from the
plots it is a good measure of the strength of nonlinearities.The plot ofβ on Fig. (4) confirms the
familiar growth of the saturation scale, which can be seen as1/x is increasing upwards on the plot.

The most interesting and novel effect as compared to previously known results is the depen-
dence of the saturation scale on the hard scale related variable p. Several cross-sections of theβ
function (we limit ourselves to the running coupling case since the fixed coupling case does not
bring anything new) on Fig. (4) indicate regions where KGBJSsolutions diverge from results of
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Figure 4: Theβ function (cross-sections for constantp). Solutions with runningαs.

the linear evolution. Thek > p areas of the plots show that the nonlinear effects enter whenthe
x0/x is rather small. We also see that atp≈ k the saturation line changes slope to larger value and
as we go towards largerk the saturation is weaker. Similar effect has been already observed in [11].
The difference is however in the strength of the effect sincein the absorptive boundary method the
authors of[11] set arbitrarily the value of gluon density below the saturation scale to a constant
value while in our approach we allow for dynamical evolutionand growth of gluon density. We
also see that with growingp the nonlinear effects become larger, the slope becomes approximately
constant and gluons get blocked by saturation. This is the consequence of larger available phase
space (note theθ(p−zq̄) factor in the kernel of the Eq. 2.1) for largerp which allows for the gluon
density to grow and therefore to come at values where the nonlinear effects start to be important.
Eventually in phase space region wherep≫ k the KGBJS equation becomes independent on the
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hard scale and therefore the saturation scale stops to depend on it. The effect, called here liberation
of saturation scale, is linked to the so-called saturation of saturation scale expected in [3, 11]. Since
as we go towards the smaller values ofp we see that the saturation bends towards thex0/x axis and
its growth is hindered.

4. Conclusions

In this paper we reported on recent numerical study of the simplified form of the KGBJS and
CCFM evolution equations with running coupling constant. We investigated the role of nonlinear-
ity in the KGBJS equation by studying the emergent saturation scale i.e. the relative differences
between solutions of the KGBJS and CCFM equations. Due to thedependence of the KGBJS
equation on the hard scale the saturation scale has been shown to depend on it in a nontrivial way.
In particular, when the hard scale gets much larger than thek of the gluon, the saturation scale stops
to depend on hard scale value and liberates itself to become afunction ofx andk only.
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