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Perturbative QCD is the appropriate tool to describe marpoimant properties of the inclusive
observables measured at electron-proton (or ion) coflideuch as the energy dependence of
the total cross sections in well-chosen kinematical regjiomhis is because the electron may
effectively be replaced by its cloud of photons, whose wilities provide a hard scale that enables
perturbative expansions.

At hadron colliders instead, there is no hard scale in thélrstate. Therefore, the observables
one may compute perturbatively involve the production tsf, jand thus belong to a quite different
class of observables.

However, it turns out that there is a formal relation betwprduction processes and total cross
sections, enabling one to apply calculations of the latiehé former. We review this relation,

and present our recent proof that it holds at next-to-leadider (in the BFKL sense).
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1. Introduction

Parton densities "seen" in hadronic collisions increadh thie energy of the collisions. This
growth is predicted by linear evolution equations such eRKL equation, established in QCD.
At very high energies, parton densities may become so la@gettiey saturate, which means that
the evolution equations become nonlinear (and change naebecome the BK and B-JIMWLK
equations, see Ref. [1] for a review). These new equatioadigirin particular the emergence of
a hard, energy-dependent, momentum scale called the tsatusaale. This regime is very inter-
esting theoretically. Parton saturation may also have itappbphenomenological consequences at
the LHC.

The question is how to test this exciting regime of QCD. Etatthadron collisions, happening
through the exchange of a virtual photon, may be understsaa dipole of "tunable” size, of
the order of the inverse virtuality of the exchanged phosmattering off the hadron (in practice,
proton or nucleus). A lot of understanding of the dipole tsratg amplitude was gained at HERA,
at the border of the dense regime of QCD. On the theoretidal, s is "easy" to formulate the
QCD evolution of the dipole amplitude with the energy asatide corrections to the dipole wave
function. One arrives at the BFKL equation in the regime of ldensities, and at the BK and
B-JIMWLK equations if one tries to account for high-denstfjects.

At a hadron collider instead, where there is no hard scale asadhe photon virtuality in the
initial state, one needs to find appropriate production ggses. The simplest of those may be the
so-called ', -broadening"” process (see Fig. 1, left) in which one obseirvéhe final state a jet of
transverse momentum, together with an arbitrary number of other particles. Therpretation is
the following: Through the interaction with hadron numbeog@e valence quark of hadron number
1 acquires a momentum of the order of the saturation scaliehwhay be large if hadron 2 is a
large nucleus and/or if the energy of the interaction is high

Figure 1: Schematic view op -broadening (left; a jet of transverse momentpmis measured) and dijet
correlations (right; two forward jets are measured, sépdrby some azimuthal anghep).

There are other more sophisticated observables that havediscussed in the literature. The
energy dependence of forward dijet azimuthal correlat{sese Fig. 1, right) is one of them [2].

An outstanding challenge is to take over what has been leatdERA to the LHC to push
further our understanding of dense QCD. A priori, this logksy hard. However, there exists a
surprising relation between total cross sections like thesomeasured in deep-inelastic scatter-
ing, and production processes measured at hadron collidéuis relation was established at the
classical level some time ago. Many authors have then asktimaeit is true also when quantum
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Figure 2: Graphical illustration of the correspondence between #te of production of a jet of trans-
verse momentunp, in pA collisions and the dipole scattering amplitude off a nuslguthe McLerran-
Venugopalan model. The red vertical lines are exchangezhglu

corrections are taken into account, but no proof was availabyond leading order until recently.
It is the purpose of this contribution to report on the reqangress in putting this relation on solid
ground [3].

We have studied in detap, -broadening, but we believe that all our analysis of quantum
corrections may go over to other production processes.

2. Formulation of a production processin proton-nucleus collision

Let us write the rate of production of a jet of transverse matn@ p, in quark-nucleus
scattering:

i [ e [ { T v 4o 4 @)

whereV is the usual Wilson line which represents the quark projagan the classical field of
the nucleus, andA) is a nuclear state. In the McLerran-Venugopalan mof#, the factor in
the square brackets can be straightforwardly identifieth Wie Smatrix element for the elastic
scattering of a color dipole of size off a large nucleus, denoted I8x ).

So we arrive at a surprising relation between two seemingty different processed:he rate
of production of a jet of transverse momentum ip the 2-dimensional Fourier transform of the
S-matrix element for the elastic scattering of a color dipahose size xis conjugate to p.

This identification can be illustrated by an appealing dregMsee Fig. 2): The quark in the
complex-conjugate amplitude of the broadening processbmélgent over” to become an antiquark
in the amplitude, and thus, together with the quark in thelange, form a color dipole. This
picture was presumably first proposed by Zakharov [5], infi@idint context however. While this
picture is literally true in the McLerran-Venugopalan mbdtds not clear whether it would be true
beyond the classical approximation.

1The question whether this equivalence would be true for agéinteraction, beyond the simplifying assumptions
of the McLerran-Venugopalan model on the statistical pridge of the field of the nucleus, was raised by several
participants to the workshop. The answer is not known. Itrseerucial for our calculation that the gluons exchanged
with the target be at most pairwise correlated, but we caexdtide that our calculation would eventually turn out to be
more general.
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Figure 3: lllustration of the would-be identity between jet-prodoatrate and dipole cross section beyond
the McLerran-Venugopalan model. The pink lines represkrtrdc fluctuations of the quark.

When quantum corrections are included, the fa8(or, ) represented by the square brackets
in EqQ. (2.1) should be changed to

S0) = 5 S o] (0T (Vo 9540 )y T (i IO40) W L 22)

where % is the QCD interaction Lagrangian, say in the lightcone gaugut now, it is not clear
that the identification with a dipol&-matrix element may still hold. Indeed, the latter woulddea
when including quantum corrections,

Sx,) = —tr<AyT (Vo Vo 75400 ) ), (2.3)

and a priori, there is no reason why tiSi, ) should be equal t&§(x, ).

In the next sections, we are going to report on our analystkesge two processes in pertur-
bation theory, in view of trying and establishing an idgnbetween them beyond the McLerran-
Venugopalan model. Needless to say, we will not be able teigiecany detail: We shall refer the
interested reader to the original paper [3].

3. Quantum corrections: leading order

In this section, we consider the first quantum correctiomé&NcLerran-Venugopalan model.
We pick one graph on the broadening side and the would-besmosnding one on the dipole side
(see Fig. 4). On the broadening side, it is an interferenaplgbetween the emission of a gluon
in the initial state in the amplitude, and the emission ofwoglin the final state in the complex-
conjugate amplitude. Using the rules of time-ordered peaiion theory. the evaluation of this
graph is especially simple since the quark-gluon verticesall treated in the eikonal approxima-
tion. We find that the particular broadening graph drawn i Bihas the expression

an [ [T o)
d2p graph in Fig. 4 N -1 1 T1)2(E5+T2)2
« [asxgx )pL] [asxgx B)pL], (3.2)

2The rules are listed for example on the recent textbook of 8gfalthough we use slightly different conventions.
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Figure4: Simplest graph contributing to the broadening cross sedtait) and the corresponding graph
contributing to the elastic dipole amplitude (right).
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Figure5: Example of broadening graph (left side of the equality) ttatesponds to a set of 4 graphs on
the dipole side (right).

where we have used standard notations. Here we have inctudeglarticular exchanges of pairs
of gluons with the target, one elastic and one inelastidesdat), represented by the factors in the
last line of the previous equation. But it would be straightfard to include an arbitrary number
of exchanges, provided that thehannel gluons have pairwise correlations. The evalnaifdhe
dipole graph in Fig. 4 gives exactly the same result, hereetis a perfect correspondence between
these graphs, even before the integration over the momenuaded that one labels properly the
latter.

There are however slightly more tricky cases even at leaglidgr. Let us consider a graph in
which the gluon is emitted in the initial state both in the &itnde and in the complex-conjugate
amplitude (see Fig. 5). In this case, one single broadeniaghgcorresponds to 4 graphs on the
dipole side. This is because the times at which the gluon igtemin the amplitude and in the
complex-conjugate amplitude respectively are not orderetthe broadening side. But on the other
hand, on the dipole side, the times at which the gluon is etfdbsorbed by the quark/antiquark
are ordered, and different orderings correspond to differgyfitttone perturbation theory graphs.
Note that instantaneous-exchange graphs need to be takescoount, and interestingly enough,
they actually cancel infinities that would plague the dipmdé&ulation. Finally, summing up all the
dipole graphs depicted in Fig. 5, one gets again an exadtfidation, momentum-by-momentum,
but this time, between one single graph on one side and a geqjgiis on the other side.
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Figure 6: One particular representant of each of the three main dassgraphs contribution tg, -
broadening at next-to-leading order. The radiative glumarsy momenta of the same order of magnitude.

The other graphs that one needs to take into account in tadinig-order case are either
symmetric to the ones studied here, or trivial (when, fomeple, the gluon couples only to the
quark or only to the antiquark on the dipole side).

All'in all, we easily find that the identification betwegn -broadening and dipole amplitudes
holds true at leading order. The identification was first pro\at leading order only, by Kovchegov
et al., see Ref. [7] and references therein.

4. Next-to-leading order

At next-to-leading order, we need to include two radiatiieogs. Therefore, there are many
more diagrams that need to be analyzed. (The order of magnitu100 graphs on both sides,
although we afford to limit ourselves to the larlye-limit in order to get rid of all nonplanar
graphs). Note that the two gluons are assumed to have cobiparemmenta. (If the momenta
were ordered, the discussion would boil down to an iteratitime leading-order case).

We can classify the graphs in basically 3 classes, accordirige number of quark-gluon
vertices (see Fig. 6). The first classd@vertices) is actually the easiest one, since it turns out tha
we never need to write down the detailed expression for thergloop. Therefore, the equivalence
with the similar-looking dipole graphs is not much more difft for this class of graphs as for
the leading order. As for the second classgBvertices), its analysis requires to write down
the full expression of the exact 3-gluon vertex. Moreover,the second and third classesqd
vertices), the time-ordering problem already encountatdeading order is not so straightforward
to solve. In order for the “broadening-dipole identificatido become manifest, one actually
needs to write the integration over some longitudinal mdonan go to the complex plane and
appropriately deform the contour, namely, perform an dreallycontinuation.

Note that we do not need to actually evaluate the momentuggrials in order to see that the
two processes are related. Such a complete calculationdvasubunt to computing the BFKL
kernel at next-to-leading order in the gluon sector.

5. Conclusion and outlook

In the context of proton-nucleus (madeAhucleons) scattering, we proved that the identity
between the rate of production of a jet of transverse monneptuand the Fourier transform of the
total cross section for the scattering of a dipole of trarswsizex; conjugate tg, holds true also
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when two additional (unobserved) gluons are included. Thers are soft compared to the quark,
but no further assumption is required on the kinematics e$ehgluons. The proof holds, strictly
speaking, in the largdk and largeA limits but the result may eventually be found to hold more
generally. By iterating our calculation to all orders, weuatly proved that the two observables
obey the same evolution equation with the rapidity, nantedyBalitsky-Kovchegov (BK) equation
at next-to-leading order accuracy.

What we have argued fqu, -broadening may be generalized straightforwardly to ofiver
cesses: For example dijet correlations are expected to th&veame evolution as dipole and
guadrupole total cross sections.

Our method was a brute-force inspection of all relevanttigine perturbation theory dia-
grams. Finding a more general and more synthetic methoddnoeilan interesting and useful
challenge. Also, we do not know whether the identity wouldvbdfied beyond next-to-leading
order accuracy.
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