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Perturbative QCD is the appropriate tool to describe many important properties of the inclusive
observables measured at electron-proton (or ion) colliders, such as the energy dependence of
the total cross sections in well-chosen kinematical regions. This is because the electron may
effectively be replaced by its cloud of photons, whose virtualities provide a hard scale that enables
perturbative expansions.
At hadron colliders instead, there is no hard scale in the initial state. Therefore, the observables
one may compute perturbatively involve the production of jets, and thus belong to a quite different
class of observables.

However, it turns out that there is a formal relation betweenproduction processes and total cross

sections, enabling one to apply calculations of the latter to the former. We review this relation,

and present our recent proof that it holds at next-to-leading order (in the BFKL sense).
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1. Introduction

Parton densities "seen" in hadronic collisions increase with the energy of the collisions. This
growth is predicted by linear evolution equations such as the BFKL equation, established in QCD.
At very high energies, parton densities may become so large that they saturate, which means that
the evolution equations become nonlinear (and change name:they become the BK and B-JIMWLK
equations, see Ref. [1] for a review). These new equations predict in particular the emergence of
a hard, energy-dependent, momentum scale called the saturation scale. This regime is very inter-
esting theoretically. Parton saturation may also have important phenomenological consequences at
the LHC.

The question is how to test this exciting regime of QCD. Electron-hadron collisions, happening
through the exchange of a virtual photon, may be understood as a dipole of "tunable" sizer, of
the order of the inverse virtuality of the exchanged photon,scattering off the hadron (in practice,
proton or nucleus). A lot of understanding of the dipole scattering amplitude was gained at HERA,
at the border of the dense regime of QCD. On the theoretical side, it is "easy" to formulate the
QCD evolution of the dipole amplitude with the energy as radiative corrections to the dipole wave
function. One arrives at the BFKL equation in the regime of low densities, and at the BK and
B-JIMWLK equations if one tries to account for high-densityeffects.

At a hadron collider instead, where there is no hard scale such as the photon virtuality in the
initial state, one needs to find appropriate production processes. The simplest of those may be the
so-called "p⊥-broadening" process (see Fig. 1, left) in which one observes in the final state a jet of
transverse momentump⊥ together with an arbitrary number of other particles. The interpretation is
the following: Through the interaction with hadron number 2, one valence quark of hadron number
1 acquires a momentum of the order of the saturation scale, which may be large if hadron 2 is a
large nucleus and/or if the energy of the interaction is high.

Figure 1: Schematic view ofp⊥-broadening (left; a jet of transverse momentump⊥ is measured) and dijet
correlations (right; two forward jets are measured, separated by some azimuthal angle∆φ ).

There are other more sophisticated observables that have been discussed in the literature. The
energy dependence of forward dijet azimuthal correlations(see Fig. 1, right) is one of them [2].

An outstanding challenge is to take over what has been learntat HERA to the LHC to push
further our understanding of dense QCD. A priori, this looksvery hard. However, there exists a
surprising relation between total cross sections like the ones measured in deep-inelastic scatter-
ing, and production processes measured at hadron colliders. This relation was established at the
classical level some time ago. Many authors have then assumed that it is true also when quantum
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Figure 2: Graphical illustration of the correspondence between the rate of production of a jet of trans-
verse momentump⊥ in pA collisions and the dipole scattering amplitude off a nucleus in the McLerran-
Venugopalan model. The red vertical lines are exchanged gluons.

corrections are taken into account, but no proof was available beyond leading order until recently.
It is the purpose of this contribution to report on the recentprogress in putting this relation on solid
ground [3].

We have studied in detailp⊥-broadening, but we believe that all our analysis of quantum
corrections may go over to other production processes.

2. Formulation of a production process in proton-nucleus collision

Let us write the rate of production of a jet of transverse momentum p⊥ in quark-nucleus
scattering:

dN
d2p⊥

=

∫

d2x⊥
(2π)2 e−ip⊥x⊥ ×

[

1
Nc

tr

{

∑
n
〈n|V0⊥ |A〉

∗〈n|Vx⊥ |A〉

}]

(2.1)

whereV is the usual Wilson line which represents the quark propagating in the classical field of
the nucleus, and|A〉 is a nuclear state. In the McLerran-Venugopalan model1 [4], the factor in
the square brackets can be straightforwardly identified with theS-matrix element for the elastic
scattering of a color dipole of sizex⊥ off a large nucleus, denoted byS(x⊥).

So we arrive at a surprising relation between two seemingly very different processes:The rate
of production of a jet of transverse momentum p⊥ is the 2-dimensional Fourier transform of the
S-matrix element for the elastic scattering of a color dipole whose size x⊥ is conjugate to p⊥.

This identification can be illustrated by an appealing drawing (see Fig. 2): The quark in the
complex-conjugate amplitude of the broadening process maybe "bent over" to become an antiquark
in the amplitude, and thus, together with the quark in the amplitude, form a color dipole. This
picture was presumably first proposed by Zakharov [5], in a different context however. While this
picture is literally true in the McLerran-Venugopalan model, it is not clear whether it would be true
beyond the classical approximation.

1The question whether this equivalence would be true for a general interaction, beyond the simplifying assumptions
of the McLerran-Venugopalan model on the statistical properties of the field of the nucleus, was raised by several
participants to the workshop. The answer is not known. It seems crucial for our calculation that the gluons exchanged
with the target be at most pairwise correlated, but we cannotexclude that our calculation would eventually turn out to be
more general.
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Figure 3: Illustration of the would-be identity between jet-production rate and dipole cross section beyond
the McLerran-Venugopalan model. The pink lines represent gluonic fluctuations of the quark.

When quantum corrections are included, the factorS(x⊥) represented by the square brackets
in Eq. (2.1) should be changed to

S̃(x⊥) =
1
Nc

∑
n

tr

{

〈n|T
(

V0⊥ei
∫

d4yLI (y)
)

|A〉∗〈n|T
(

Vx⊥ei
∫

d4yLI (y)
)

|A〉

}

, (2.2)

whereLI is the QCD interaction Lagrangian, say in the lightcone gauge. But now, it is not clear
that the identification with a dipoleS-matrix element may still hold. Indeed, the latter would read,
when including quantum corrections,

S(x⊥) =
1
Nc

tr〈A|T
(

V†
0⊥

Vx⊥ei
∫

d4yLI (y)
)

|A〉, (2.3)

and a priori, there is no reason why thisS(x⊥) should be equal tõS(x⊥).
In the next sections, we are going to report on our analysis ofthese two processes in pertur-

bation theory, in view of trying and establishing an identity between them beyond the McLerran-
Venugopalan model. Needless to say, we will not be able to provide any detail: We shall refer the
interested reader to the original paper [3].

3. Quantum corrections: leading order

In this section, we consider the first quantum correction to the McLerran-Venugopalan model.
We pick one graph on the broadening side and the would-be corresponding one on the dipole side
(see Fig. 4). On the broadening side, it is an interference graph between the emission of a gluon
in the initial state in the amplitude, and the emission of a gluon in the final state in the complex-
conjugate amplitude. Using the rules of time-ordered perturbation theory,2 the evaluation of this
graph is especially simple since the quark-gluon vertices are all treated in the eikonal approxima-
tion. We find that the particular broadening graph drawn in Fig. 4 has the expression

dN
d2p

∣

∣

∣

∣

graph in Fig. 4
=−

αsNc

N2
c −1

∫ +∞

0

dk+
k+

∫

d2~l1
~l2

1

d2~l2
~l2

2

(~p−~l1) · (~p+~l2)

(~p−~l1)2(~p+~l2)2

×
[

αsxg(x,~l2
1)ρL

][

αsxg(x,~l2
2)ρL

]

, (3.1)

2The rules are listed for example on the recent textbook of Ref. [6], although we use slightly different conventions.
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Figure 4: Simplest graph contributing to the broadening cross section (left) and the corresponding graph
contributing to the elastic dipole amplitude (right).
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Figure 5: Example of broadening graph (left side of the equality) thatcorresponds to a set of 4 graphs on
the dipole side (right).

where we have used standard notations. Here we have includedtwo particular exchanges of pairs
of gluons with the target, one elastic and one inelastic scattering, represented by the factors in the
last line of the previous equation. But it would be straightforward to include an arbitrary number
of exchanges, provided that thet-channel gluons have pairwise correlations. The evaluation of the
dipole graph in Fig. 4 gives exactly the same result, hence there is a perfect correspondence between
these graphs, even before the integration over the momenta,provided that one labels properly the
latter.

There are however slightly more tricky cases even at leadingorder. Let us consider a graph in
which the gluon is emitted in the initial state both in the amplitude and in the complex-conjugate
amplitude (see Fig. 5). In this case, one single broadening graph corresponds to 4 graphs on the
dipole side. This is because the times at which the gluon is emitted in the amplitude and in the
complex-conjugate amplitude respectively are not orderedon the broadening side. But on the other
hand, on the dipole side, the times at which the gluon is emitted/absorbed by the quark/antiquark
are ordered, and different orderings correspond to different lightcone perturbation theory graphs.
Note that instantaneous-exchange graphs need to be taken into account, and interestingly enough,
they actually cancel infinities that would plague the dipolecalculation. Finally, summing up all the
dipole graphs depicted in Fig. 5, one gets again an exact identification, momentum-by-momentum,
but this time, between one single graph on one side and a set ofgraphs on the other side.
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Figure 6: One particular representant of each of the three main classes of graphs contribution top⊥-
broadening at next-to-leading order. The radiative gluonscarry momenta of the same order of magnitude.

The other graphs that one needs to take into account in this leading-order case are either
symmetric to the ones studied here, or trivial (when, for example, the gluon couples only to the
quark or only to the antiquark on the dipole side).

All in all, we easily find that the identification betweenp⊥-broadening and dipole amplitudes
holds true at leading order. The identification was first proven, at leading order only, by Kovchegov
et al., see Ref. [7] and references therein.

4. Next-to-leading order

At next-to-leading order, we need to include two radiative gluons. Therefore, there are many
more diagrams that need to be analyzed. (The order of magnitude is 100 graphs on both sides,
although we afford to limit ourselves to the large-Nc limit in order to get rid of all nonplanar
graphs). Note that the two gluons are assumed to have comparable momenta. (If the momenta
were ordered, the discussion would boil down to an iterationof the leading-order case).

We can classify the graphs in basically 3 classes, accordingto the number of quark-gluon
vertices (see Fig. 6). The first class (2qgvertices) is actually the easiest one, since it turns out that
we never need to write down the detailed expression for the gluon loop. Therefore, the equivalence
with the similar-looking dipole graphs is not much more difficult for this class of graphs as for
the leading order. As for the second class (3qg vertices), its analysis requires to write down
the full expression of the exact 3-gluon vertex. Moreover, for the second and third classes (4qg
vertices), the time-ordering problem already encounteredat leading order is not so straightforward
to solve. In order for the “broadening-dipole identification” to become manifest, one actually
needs to write the integration over some longitudinal momentum, go to the complex plane and
appropriately deform the contour, namely, perform an analytical continuation.

Note that we do not need to actually evaluate the momentum integrals in order to see that the
two processes are related. Such a complete calculation would amount to computing the BFKL
kernel at next-to-leading order in the gluon sector.

5. Conclusion and outlook

In the context of proton-nucleus (made ofA nucleons) scattering, we proved that the identity
between the rate of production of a jet of transverse momentum p⊥ and the Fourier transform of the
total cross section for the scattering of a dipole of transverse sizex⊥ conjugate top⊥ holds true also
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when two additional (unobserved) gluons are included. The gluons are soft compared to the quark,
but no further assumption is required on the kinematics of these gluons. The proof holds, strictly
speaking, in the large-Nc and large-A limits but the result may eventually be found to hold more
generally. By iterating our calculation to all orders, we actually proved that the two observables
obey the same evolution equation with the rapidity, namely the Balitsky-Kovchegov (BK) equation
at next-to-leading order accuracy.

What we have argued forp⊥-broadening may be generalized straightforwardly to otherpro-
cesses: For example dijet correlations are expected to havethe same evolution as dipole and
quadrupole total cross sections.

Our method was a brute-force inspection of all relevant light-cone perturbation theory dia-
grams. Finding a more general and more synthetic method would be an interesting and useful
challenge. Also, we do not know whether the identity would beverified beyond next-to-leading
order accuracy.
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