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1. Introduction

Major developments in the last two decades in small-x physics made possible the phenomeno-
logical analysis of deep inelastic scattering (DIS) processes within thekT factorization scheme.
They were mainly driven by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) framework for the resum-
mation of high center-of-mass energy logarithms at leading[1] and next-to-leading [2] logarithmic
accuracy.

Indeed, a lot of studies were dedicated on setting up the stage for studying DIS processes
within the BFKL formalism [3] and recently there were successful attempts for the detailed de-
scription of theQ2 and x dependence of the structure functionsF2 and FL by making use of a
collinearly-improved BFKL equation at next-to-leading logarithmic accuracy [4].

Apart from the gluon density, another key ingredients for studying DIS processes are the im-
pact factors which are process dependent objects. The impact factors for gluons and massless
quarks have been calculated in Ref. [5], at next-to-leadinglogarithmic accuracy (NLx). This al-
lows for the calculation of various DIS and ‘double DIS’ processes with massless quarks and gluons
in the initial state. The generalization to hadron-hadron collisions has also been established [6–8].

The NLx impact factor for a massive quark in the initial state has been calculated in Ref. [9].
However, the result was written in the form of a sum of an infinite number of terms. To make that
result of Ref. [9] available for phenomenological studies we recalculate the next-to-leading order
heavy quark impact factor in a compact and resummed form which is more suitable for numerical
applications.

2. kT -factorization

We start with some useful definitions. The differential cross-section of the high-energy scat-
tering of two partons,a andb, can be written in a factorized form in terms of the gluon Green’s
functionGω and the impact factors of the two partons,ha andhb respectively:

dσab

d[k1]d[k2]
=

∫

dω
2π iω

ha(k1)Gω(k1,k2)hb(k2)

(

s
s0(k1,k2)

)ω
. (2.1)

We adopt d[k] = d2+2ε k/π1+ε as the transverse phase-space measure. The leading logx impact
factor, h(0), can be written as

h(0)(k) =

√

π
N2

c −1
2CF αsNε

k2 µ2ε , where Nε =
(4π)ε/2

Γ(1− ε)
, (2.2)

and has the same form for quarks and gluons, whereasµ is the renormalization scale, and

αs =
αsNc

π
, αs =

g2Γ(1− ε)µ2ε

(4π)1+ε , (2.3)

is the dimensionless strong coupling constant. We also define

Aε = k2h(0)(k)
αs

Γ(1− ε)µ2ε , (2.4)

to factor out the dependence on the strong coupling constantand color factors.
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3. The NLO heavy quark impact factor

According to Ref. [9], the NLx correction to the heavy quark impact factor can be written asa
sum of three contributions:

h(1)
q (k2)= h(1)

q,m=0(k2)+

∫ 1

0
dz1

∫

d[k1]∆Fq(z1,k1,k2)+

∫

d[k1]αsh(0)
q (k1)K0(k1,k2) log

m
k1

Θmk1 ,

(3.1)
wherek1 = |k1|, Θmk1 = θ(m−k1) and

αsK0(k1,k2) =
αs

q2Γ(1− ε)µ2ε +2ω(1)(k2
1)δ [q] , where δ [q] = π1+ε δ 2+2ε(q) , (3.2)

is the leading order BFKL kernel.q = k1 + k2 and

ω(1)(k2) = − g2Nck2

(4π)2+ε

∫

d[p]

p2(k−p)2 = −αs

2ε
Γ2(1+ ε)

Γ(1+2ε)

(

k2

µ2

)ε

, (3.3)

is the gluon Regge trajectory. The first term on the right-hand side of Eq. (3.1) is the massless NLx
correction to the impact factor which was computed in Ref. [5]. Here, we discuss the last two terms
in the right-hand side of Eq. (3.1).

3.1 The ∆Fq term

The second term in the right-hand side of Eq. (3.1) reads in momentum space:

∆Fq(k2) = ∆Fq,real(k2)+ ∆Fq,virt (k2)

= Aε

[

Γ(−ε)

2(1+2ε)

(m2)ε

k2
2

+
Γ(1− ε)

2

{

∫ 1

0

∫ 1

0
dz1 dx

(

1−z1

z1
+

1+ ε
2

z1

)

×
[

1
[

x(1−x)k2
2 +m2z2

1

]1−ε − 1
[

x(1−x)k2
2

]1−ε

]

+
2m2

k2
2

∫ 1

0

∫ 1

0

z1(1−z1)dz1 dx
[

x(1−x)k2
2 +m2z2

1

]1−ε

}

]

. (3.4)

We cannot calculate the integral directly but we can calculate its Mellin transform,

∆F̃q(γ ,ε) = Γ(1+ ε)(m2)−ε
∫

d[k2]

(

k2
2

m2

)γ−1

∆Fq(k2) , (3.5)

to get finally inγ-space:

∆F̃q(γ ,ε) = Aε (m2)ε Γ(γ + ε)Γ(1− γ −2ε)Γ2(1− γ − ε)

8Γ(2−2γ −2ε)

×
[

1+ ε
γ +2ε

+
2

1−2γ −4ε

(

1
1− γ −2ε

− 1
3−2γ −2ε

)]

. (3.6)

In Ref. [9], the residua of Eq. (3.6) at the polesγ = 1− ε andγ = 1−2ε were studied and the
singular terms inε were isolated. For the remaining poles, the limitε → 0 was taken and the residua
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were summed. It turns out, however, that the resulting infinite sums1 are not suitable for further
studies. Namely, the sum of residua to the left of the real axis for γ > 1 does not converge in the
region 4m2/k2

2 > 1, which makes it impossible to obtain values of the impact factor in that region.
We find that this obstacle can be overcome by keeping the fullε-dependence in the resummation
of the pole-contributions and isolating the singular and finite terms after resumming the infinite
sum. In the following, we keep the fullε-dependence, we perform the inverse Mellin transform by
summing the residua of the poles appearing forγ ≥ 1− ε andγ ≤ 1−2ε and then we expand inε
to resolve 1/ε2 , 1/ε and finite terms.

The inverse Mellin transform is given by

∆Fq(k2) =
1

m2

∫

1−2ε<Reγ<1−ε

dγ
2π i

(

k2
2

m2

)−γ−ε

∆F̃q(γ ,ε) . (3.7)

The integral in Eq. (3.7) can be calculated by either closingthe integration contour at infinity to
the left of the pole atγ = 1−2ε or to the right of the pole atγ = 1− ε and summing the residua
within the contour. The respective contributions are givenby h−1 andh+

1 (for convenience we define

R=
k2

2
4m2 ):

h−1 (R) = ∑
γ≤1−2ε

Res

{

(4R)1−γ−ε ∆F̃q(γ ,ε)

}

, (3.8)

h+
1 (R) = − ∑

γ≥1−ε
Res

{

(4R)1−γ−ε ∆F̃q(γ ,ε)

}

. (3.9)

We choose to close the contour to the left and resum all the pole contributions. These are distinct
contributions from the poles located atγ = 1−2ε , 1

2 −2ε , −ε , −2ε and finally from the poles at
γ = −n+ ε with n being positive integer.

3.2 The K0(k1,k2) term

Let us now turn to the final ingredient in order to have the fullNLx heavy quark impact factor
with mass corrections. For the real emission contribution to K0 in Eq. (3.1) we define the integral

Im =

∫

d[k1]
αsh

(0)
q (k1)

q2Γ(1− ε)µ2ε log
m
k1

Θmk1 . (3.10)

Eq. (3.10) can then be rewritten as:

Im =
Aε

2
lim

α→0+

∫ +i ∞

−i ∞

dλ
2π i

1
(λ + α)2 (m2)λ

∫

d[k1]

q2(k2
1)

1+λ

=
Aε

2
lim

α→0+

∫ +i ∞

−i ∞

dλ
2π i

1
(λ + α)2

Γ(1+ λ − ε)Γ(ε)Γ(ε −λ )

Γ(1+ λ )Γ(2ε −λ )
(m2)λ (k2

2)
−1−λ+ε ,

(3.11)

whereα > 0. To recoverIm the limit α → 0 has to be taken. Eq. (3.11) has a form similar to
Eq. (3.7). A similar procedure to the one in Section 3.1 can beapplied in order to calculate the
integral on the right-hand side of Eq. (3.7). The leading poles containing the singular terms inε

1See Ref. [9]
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are now atλ = −α , (α → 0+), if the integration contour is closed to the left and atλ = ε if it is
closed to the right.

In analogy withh±1 (R) we defineh±2 (R). After summing the residues of the integrand of
Eq. (3.7) and expanding inε we obtain fork2

2 < m2:

h−2 (R) = h(0)(k2)ω(1)(k2)
(

−ε−1+ log(4R)− ε Li2(4R)
)

, (3.12)

and fork2
2 > m2:

h+
2 (R) = h(0)(k2)ω(1)(k2)

[

−ε−1+ log(4R)− ε
(

1
2

log2(4R)+Li2

(

1
4R

))]

. (3.13)

It is now noteworthy to explain whyh−2 (R) 6= h+
2 (R) in contrast toh−1 (R) = h+

1 (R). The original
integral definition ofIm in Eq. (3.10) contains theθ -function Θmk1. After rewriting it into the
form of Eq. (3.11) we see that theθ -function generates after integration a discontinuity in the first
derivative ofIm.

Fork2
2 < m2 we have to include also the virtual term ofK0, which leads to the contribution

h+
V (k2) = −h(0)(k2)ω(1)(k2

2) log

(

k2
2

m2

)

Θmk2 . (3.14)

3.3 Final compact expression for the heavy quark impact factor

The contributions discussed in the previous sections can beput together into a very compact
formula. The NLx heavy quark impact factor can be expressed as the sum

hq(k2) = h(1)
q (k2)|sing+hq(k2)|finite , (3.15)

where the singular termh(1)
q (k2)|sing has been calculated in Ref. [9], and the finite contribution is

given by

hq(k2)|finite = h(0)
q (αs(k2))

{

1+
αSNC

2π

[

K − π2

6
+1− log(R1)

(

(1+2R)

√

1+R
R

+2log(R1)

)

−3
√

R

(

Li2(R1)−Li2 (−R1)+ log(R1) log

(

1−R1

1+R1

))

+Li2(4R) Θmk2 +

(

1
2

log(4R)+
1
2

log2(4R)+Li2

(

1
4R

))

Θk2 m

]}

, (3.16)

with R1 = (
√

R+
√

1+R)−1, andK being

K =
67
18

− π2

6
− 5nf

9Nc
. (3.17)

As in Ref. [9], we have absorbed the singularities proportional to the beta function into the running
of the strong coupling constant,αs(k2) [10].
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4. Conclusions and outlook

We discussed in some detail how, based on the results in Ref. [9], we obtained expressions
suitable for the numerical implementation of the heavy quark impact factor in momentum space.
We have also showed, that the first derivative in thet-channel transverse momentumk2 of the finite
part of the heavy quark impact factor exhibits a discontinuity at the point where the transverse
momentum is equal to the mass of the heavy quark,|k2| = m. We will present further results
of the actual numerical implementation [11] of the heavy quark impact factor in momentum and
γ-space [12] for phenomenological studies —such as the single bottom quark production at the
LHC— elsewhere.
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