

105

New Results on Diffractive and Exclusive Production from CDF

Konstantin GOULIANOS*[†] The Rockefeller University E-mail: dino@rockefeller.edu

We present results on central exclusive production of $\pi^+\pi^-$ in $\bar{p}p$ collisions at $\sqrt{s} = 900$ and 1960 GeV using events with two charged hadrons in the final state within the pseudorapidity region $|\eta| \le 1.3$ and no particles in $|\eta| > 1.3$. These results open a new window into hadron spectroscopy, and may be used as benchmarks for testing relevant theoretical models.

XXI International Workshop on Deep-Inelastic Scattering and Related Subject -DIS2013, 22-26 April 2013 Marseilles, France

*Speaker.

POS (DIS

2013)08

 $^{^\}dagger Presented on behalf of the CDF Collaboration.$

1. Introduction

The CDF Collaboration (CDF) has been studying diffraction in $\bar{p}p$ collisions for the past quarter century, aiming to understand the QCD aspects of the diffractive exchange, a strongly interacting color-singlet quark/gluon combination with vacuum quantum numbers, traditionally referred to as Pomeron ($I\!P$) exchange. Such exchanges lead to large, non-exponentially suppressed pseudorapidity regions devoid of particles, called rapidity¹gaps. Diffractive processes are classified as single dissociation or single diffraction, SD, characterized by a forward gap adjacent to a surviving \bar{p} or p, double dissociation or double diffraction, DD, characterized by a central gap, and central diffraction or double-Pomeron exchange, CD or DPE, a process with two forward gaps.

A special class of diffraction is central exclusive production, a DPE process in which a specific state is centrally produced [1]. CDF has published results on exclusive *dijet* (2008) [2], $\mu^+\mu^-$: χ_c , J/ψ and $J/\psi(2s)$ (2009) [3], and $\gamma\gamma/e^+e^-$ (2012) [4] production. Here, we report on the observation of exclusive $\pi^+\pi^-$ production [5] and compare the results with theoretical expectations.

2. Central exclusive production of $\pi^+\pi^-$

2.1 Detector, triggers, datasets

Detector. The CDF II detector is shown schematically in Fig 1. It consists of the main detector, labeled CDF-II in this figure, equipped with a tracking system and calorimeters (central: CCAL, plug: PCAL), and the forward components (Cherenkov Luminosity Counters: CLC, MiniPlugs: MP, Roman Pot Spectrometer: RPS). The RPS and MPs were not active in this study, and from the BSCs only those covering the pseudorapidity region of $5.4 < |\eta| < 5.9$ are used.

Figure 1: Schematic plan view of the CDF II detector showing the tracking system and calorimeters (CCAL, PCAL), and forward components (MP, CLC, BSC, RPS); EBSs are electrostatic beam separators.

Triggers. The following two triggeres were used for data collection:

- signal: two CCAL towers ($|\eta| < 1.3$) with energy E > 0.5 GeV (a very low threshold!) and no energy in BSC ($|\eta| = 5.4 5.9$) and in the Forward Plug Calorimeters ($|\eta| = 2.11 3.64$).
- zero-bias: offline selected bunch-crossing events with no tracks for noise/exclusivity studies.

Datasets. The signal datasets consist of 90 (22) $\times 10^6$ events at $\sqrt{s} = 1960$ (900) GeV.

¹Rapidity, $y = \frac{1}{2} \ln \frac{E+p_L}{E-p_L}$, and pseudorapidity, $\eta = -\ln \tan \frac{\theta}{2}$, where θ is the polar angle of a particle w.r.t. the proton beam (+ \hat{z}), are used interchangeably for particles detected in the calorimeters, as they are approximately equal.

2.2 Preliminary results

We report results for events with exactly two tracks within rapidity $|y_{\pi^+\pi^-}| < 1.0$ and $M_{\pi^+\pi^-} < 0.8$, where there is useful acceptance at all p_T . No particle ID is (yet) being used, and the observed tracks are assumed to be due to pions.

We select events in regions of instantaneous luminosity $1 \times 10^{30} < L < 2.2 \times 10^{30}$ cm⁻² s⁻¹ (Fig. 2-left), and set detector thresholds for optimum signal/noise ratio (Fig. 2-right).

Figure 2: Zero-bias data sample at $\sqrt{s} = 1960$ GeV with an exponential fit: (left) efficiency of event selection (probability that the whole detector is empty) vs beam-bunch instantaneous luminosity for a single bunch (the *L* quoted in the text is 36 times larger, as there are 36 colliding bunches); (right) detector-noise levels for "interaction" and "no-interaction" events. The vertical dashed lines show the cuts used to define "empty" detectors, or "noise" (the K^+K^- background in this area, measured with K^0K^0 events, amounts to only a few %).

Figure 3 shows mass distributions of $\pi^+\pi^-$ candidate events uncorrected (left) and corrected (right) for acceptance. The f_0 (980), f_2 (1270), and $f_0(1370)$ are clearly visible. The small but significant peak at 3.1 GeV is understood to be from $J/\psi \rightarrow e^+e^-$ with $M_{e^+e^-}$ treated as $M_{\pi^+\pi^-}$.

Figure 3: $M_{\pi^+\pi^-}$ distributions at $\sqrt{s} = 1960$ GeV not corrected (left) and corrected (right) for acceptance.

Figure 4 shows the ratio of $\pi^+\pi^-$ candidates at $\sqrt{s} = 1960/900$ GeV (top), and the mean p_t for $\sqrt{s} = 1960$ GeV (bottom-left) and $\sqrt{s} = 900$ GeV (bottom-right) vs $M_{\pi^+\pi^-}$. The statistically

more significant data at $\sqrt{s} = 1960$ GeV show structures at 1.5 GeV, 2.25 GeV, and between 3 GeV and 4 GeV. Work is in progress to understand these structures, including a phase-shift analysis.

Figure 4: Ratio of events at $\sqrt{s} = 1960/900$ GeV (top), and mean p_t of π^+/π^- (left/right) vs M_{$\pi^+\pi^-$}.

In Fig. 5, we compare the distributions of $d\sigma/dM_{\pi^+\pi^-}$ of events at $\sqrt{s} = 1960$ and 900 GeV for $M_{\pi^+\pi^-} < 5$ GeV (left), and zoom into the region of $M_{\pi^+\pi^-} < 2$ GeV (right) for an expanded view. At $M_{\pi^+\pi^-} > 1.5$ GeV, we observe features in the mass spectrum which are not yet understood and are the subject of further studies currently underway, including a partial wave analysis.

Figure 5: Differential cross sections $d\sigma/dM_{\pi^+\pi^-}$ vs $M_{\pi^+\pi^-}$ at $\sqrt{s} = 1960$ and 900 GeV for the mass regions $M_{\pi^+\pi^-} < 5$ GeV (left) and $M_{\pi^+\pi^-} < 2$ GeV (right).

3. Summary

We have measured exclusive $\pi^+\pi^-$ production in $\bar{p}p$ collisions at $\sqrt{s} = 900$ GeV and $\sqrt{s} = 1960$ GeV with the CDF II detector at the Fermilab Tevatron Collider. Using tracks, assumed to be from pions which are the dominant charged-pair component, we explored the low mass region of $M_{\pi^+\pi^-} < 5$ GeV. We observe the well known resonances f_0 (980) and f_2 (1270), and see a small but significant peak at 3.1 GeV understood to be from $J/\psi \rightarrow e^+e^-$ with $M_{e^+e^-}$ assumed as $M_{\pi^+\pi^-}$. We also observe features at $M_{\pi^+\pi^-} > 1.5$ GeV which are not yet understood. Further investigations of these features and a partial wave analysis are currently underway.

Acknowledgements

I would like to thank my colleagues at the CDF Collaboration who made this work possible, and the Office of Science of the Department of Energy for financial support.

References

- M. G. Albrow, T. D. Coughlin and J. R. Forshaw, *Central Exclusive Particle Production at High Energy Hadron Colliders*, Prog. Part. Nucl. Phys. 65, 149 (2010) [hep-ph/1006.1289].
- [2] T. Aaltonen et al. (CDF Collaboration), Observation of Exclusive Dijet Production at the Fermilab Tevatron pp Collider, Phys. Rev. D 77, 052004 (2008) [hep-ex/1206.3995].
- [3] T. Aaltonen *et al.* (CDF Collaboration), *Observation of Exclusive Charmonium Production and* $\gamma\gamma \rightarrow \mu^+\mu^-$ *in* $\bar{p}p$ *Collisions at* $\sqrt{s} = 1.96$ *TeV*, Phys. Rev. Lett. **102**, 242001 (2009) [hep-ex/0902.1271].
- [4] T. Aaltonen *et al.* (CDF Collaboration), *Observation of Exclusive \gamma\gamma Production in p\bar{p} Collisions at \sqrt{s} = 1.96 TeV, Phys. Rev. Lett. 108, 081801 (2012) [hep-ex/1112.0858].*
- [5] M. G. Albrow (Representing the CDF Collaboration), *Central Exclusive Production of Hadrons in CDF*, in proceedings of *DIFFRACTION 2012: International Workshop on Diffraction in High Energy Physics*, *10-15 September 2012*, AIP Conf. Proc. 1523, pp. 294-297 (2013)
 [doi:http://dx.doi.org/10.1063/1.4802170].