Diffractive vector meson production at HERA using holographic AdS/QCD wavefunctions

Jeff FORSHAW
University of Manchester
E-mail: jeff.forshaw@hep.manchester.ac.uk

Ruben SANDAPEN∗†
Université de Moncton & Mount Allison University
E-mail: ruben.sandapen@umoncton.ca

We demonstrate another success of the AdS/QCD correspondence by showing [1, 2] that an AdS/QCD holographic light-front wavefunction for the ρ meson generates predictions for the cross-sections of diffractive ρ production that are in agreement with data collected at the HERA electron-proton collider [3, 4].

XXI International Workshop on Deep-Inelastic Scattering and Related Subjects
22-26 April, 2013
Marseilles, France

∗Speaker.
†RS thanks the organisers for their invitation as well as Université de Moncton & Mount Allison University for funding.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
1. Introduction

The AdS/QCD correspondence [5, 6, 7, 8] refers to the connection between QCD in physical spacetime and string theory in a higher dimensional anti-de Sitter (AdS) space. The precise nature of this connection has not yet been elucidated but there is growing evidence, to which we add here, that there exists such a connection. One particular realization of this connection is light-front holography [9] proposed by Brodsky and de Téramond. In light-front holography, the confining QCD potential at equal light-front time between a quark and antiquark in a meson is determined by the profile of the dilaton field which breaks conformal invariance of the higher dimensional AdS space in which strings propagate.

In a semi-classical approximation to light-front QCD, Brodsky and de Téramond derived a Schroedinger-like equation for mesons:

\[
\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta) \right) \Phi(\zeta) = M^2 \Phi(\zeta),
\]

where \(\zeta = \sqrt{x(1-x)}r\) is the transverse separation between the quark and antiquark at equal light-front time \(^1\), \(L\) is the orbital quantum number, \(M\) is the mass of the meson and \(\Phi(\zeta)\) is the transverse mode of the light-front wavefunction which is itself given by

\[
\phi(x, \zeta, \phi) = \frac{\Phi(\zeta)}{\sqrt{2\pi\zeta}} f(x)e^{il\phi}.
\]

It remains a challenge to derive the confining potential \(U(\zeta)\) from first-principles QCD but after identifying \(\zeta\) with the co-ordinate in the fifth dimension and angular momentum with the fifth dimensional mass\(^2\), equation (1.1) describes the propagation of spin-\(J\) string modes, in which case \(U(\zeta)\) is determined by the choice for the dilaton field. Remarkably, it can be shown [10] that the dilaton profile is constrained to be quadratic so that the resulting confining potential is given by

\[
U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (J - 1).
\]

Solving equation (1.1) with this confining potential yields the eigenfunctions

\[
\Phi_{nL}(\zeta) = \kappa^{1+L} \sqrt{\frac{2n}{(n+L)!}} L_n^{1/2+L} \exp\left(-\kappa^2 \zeta^2 / 2\right) L_n^{1/2+L}(\kappa^2 \zeta^2)
\]

with the corresponding eigenvalues

\[
M_{nL,S}^2 = 4\kappa^2 \left(n + L + \frac{S}{2}\right).
\]

\(^1\)\(x\) is the fraction of light-front momentum carried by the quark and \(r\) is the transverse separation between the quark and the antiquark at equal ordinary time.

\(^2\)(\(m_5R\))^2 = -(2 - J)^2 + L^2\) where \(R\) is the radius of curvature in AdS space.
2. The ρ meson wavefunction

For the ρ meson, $n = 1, L = 0$ and $J = 1$ so that $\kappa = M_\rho / \sqrt{2} = 0.54$ GeV. In equation (1.2), $f(x)$ is fixed by comparing the expressions for the pion EM form factor in light-front QCD and in AdS space. This yields $f(x) = \sqrt{x(1-x)}$ so that the resulting AdS/QCD for the ρ is then given by

$$\phi(x, \zeta) \propto \sqrt{x(1-x)} \exp \left(-\frac{1}{2} \kappa^2 \zeta^2 \right) \exp \left(-\frac{m_\rho^2}{2 \kappa^2 x(1-x)} \right)$$

(2.1)

where the dependence on the quark mass has been introduced according to the prescription by Brodsky and de Téramond [11]. Here we use a light quark mass $m_f = 0.14$ GeV [1].

An earlier procedure to obtain the meson wavefunction is by boosting a non relativistic gaussian Schroedinger wavefunction [12, 13] which results in the so-called Boosted Gaussian (BG):

$$\phi^{BG}(x, \zeta) \propto x(1-x) \exp \left(-\frac{m_f^2 R^2}{2x(1-x)} \right) \exp \left(-\frac{2 \zeta^2}{R^2} \right).$$

(2.2)

If $R^2 = 4 / \kappa^2$ then the two wavefunctions differ only by a factor of $\sqrt{x(1-x)}$, which is not surprising given that in both cases confinement is modelled by a harmonic oscillator [1]. In what follows we shall consider a parameterization that accommodates both the AdS/QCD and the BG wavefunctions:

$$\phi(x, \zeta) \propto [x(1-x)]^\beta \exp \left(-\frac{1}{2} \kappa^2 \zeta^2 \right) \exp \left(-\frac{m_\rho^2}{2 \kappa^2 x(1-x)} \right).$$

(2.3)

The AdS/QCD wavefunction is obtained by fixing $\beta = 0.5$ and $\kappa = 0.55$ GeV where as the BG wavefunction is obtained by fixing $\beta = 1$ and treating κ as a free parameter.

3. Results and conclusions

To compute the rate for diffractive ρ production, we use the dipole model of high-energy scattering [14, 15, 16, 17] in which the scattering amplitude for diffractive ρ meson production is a convolution of the photon and vector meson $q\bar{q}$ light-front wavefunctions with the total cross-section to scatter a $q\bar{q}$ dipole off a proton. QED is used to determine the photon wavefunction and the dipole cross-section can be extracted from the precise data on the deep-inelastic structure function F_2 [18, 19]. This formalism can then be used to predict rates for vector meson production and diffractive DIS [13, 20] or to extract information on the ρ meson wavefunction using the HERA data on diffractive ρ production [21, 22]. Here we use it to test whether the HERA data prefer the AdS/QCD wavefunction given by equation (2.1). To do so, we compute the χ^2 per data point in the (β, κ) parameter space using the parametrization (2.3) for the ρ wavefunction.\footnote{We include the electroproduction data and decay width datum in the fit.}

Figure 1 confirms that the AdS/QCD prediction lies impressively close to the minimum in χ^2. The best fit has a χ^2 per data point equal to 114/76 and is achieved with $\kappa = 0.56$ GeV and $\beta = 0.47$ which should be compared with the AdS/QCD prediction: $\kappa = 0.54$ and $\beta = 0.5$ shown...
Diffractive vector meson production at HERA using holographic AdS/QCD wavefunctions

Ruben SANDAPEN

Figure 1: The χ^2 distribution in the (β, κ) parameter space. The AdS/QCD prediction is the white star.

as the white star on figure 1. Note that the BG prediction i.e. $\beta = 1, \forall \kappa$, is clearly further away from the minimum in χ^2.

Finally, we note that these results are produced using a particular Color Glass Condensate dipole model [18] but that similar results are obtained by using other forward dipole models [19] that fit the F_2 structure function data. It remains to be seen how the χ^2 distribution changes if a more sophisticated dipole model, such as the recent impact parameter saturation model [23] which fits the combined HERA F_2 data, is used.

References

Diffractive vector meson production at HERA using holographic AdS/QCD wavefunctions
Ruben SANDAPEN

