Lepton flavour universality and lepton flavour conservation tests in kaon decays at CERN

Sergey Podolsky

Centre for Cosmology, Particle Physics and Phenomenology (CP3)
Universite catholique de Louvain
Chemin du Cyclotron, 2
B-1348 Louvain-la-Neuve,
Belgium
E-mail: siarhei.podolski@cern.ch

A precision measurement of the ratio of the rates of kaon leptonic decays $K^\pm \to e^\pm \nu$ and $K^\pm \to \mu^\pm \nu$ with the full minimum bias data sample collected with low intensity 75 GeV/c beam by the NA62 experiment at CERN in 2007-2008 is reported. The result, obtained by analyzing 150,000 reconstructed $K^\pm \to e^\pm \nu$ candidates with 11% background contamination, has a record precision of 0.4% and is in agreement with the Standard Model expectation.

An improved upper limit on the rate of the lepton number violating decay $K^\pm \to \pi^\pm \mu^\pm \mu^\pm$ from the NA48/2 experiment, which probes the resonant enhancement of the rate in the presence of heavy Majorana neutrinos in the 100 MeV range, is also reported. The prospects for the searches of lepton number and flavour violating decays of the charged kaon with an improved sensitivity down to 10^{-12} during the forthcoming main phase of the NA62 experiment are discussed.

XXI International Workshop on Deep-Inelastic Scattering and Related Subject - DIS2013,
22-26 April 2013
Marseilles, France

Speaker.
1. Introduction

The present NA62 [1] experiment and its predecessor NA48/2 [2] performed series of tests for finding new phenomena, beyond the Standard Model (SM). Two studies, aimed to test flavour conservation law and lepton flavour universality as well as prospects for future studies of forbidden decays are presented in this paper.

2. Lepton flavour universality test

2.1 Motivation

The SM provides a very clean tool for the lepton flavour universality test. The value of \(R_K = \Gamma(K_{e2})/\Gamma(K_{\mu2}) \) is free from hadronic uncertainties and could be estimated including of internal bremsstrahlung (IB) radiation in the following way [3]:

\[
R_K^{SM} = \left(\frac{M_e}{M_\mu} \right)^2 \left(\frac{M_K^2 - M_e^2}{M_K^2 - M_\mu^2} \right)^2 (1 + \delta R_{QED}) = (2.447 \pm 0.001) \times 10^{-5}.
\]

Observing a deviation from this value would point on existence of physics beyond the SM (for example [4, 5, 6]). Since precision of the previous measurement [7] of \(R_K \) exceeded the uncertainty of SM estimation tens times, the \(R_K \) measurement became primary interest of the first phase of the NA62 experiment.

2.2 Measurement principle

Experimental determination of ratio \(R_K = \Gamma(K_{e2})/\Gamma(K_{\mu2}) \) is free from uncertainties due to overall normalization if both processes are registered in the concurrent way. Also this approach eliminates time-dependent systematic effects related to the setup work conditions. This strategy has been applied in the NA62 experiment.

Initial state of each event of the measured processes did not register. In case of \(K_{e2} \) process energy of electron measured by the LKr electromagnetic calorimeter. Special muon counters were used for \(e/\mu \) separation at downstream part of the setup. Momentum of both charged leptons were estimated by a magnetic spectrometer installed before the LKr calorimeter and muon counters. The \(R_K \) value was calculated by using:

\[
R_K = \frac{1}{D} \cdot \frac{N(K_{e2}) - N_b(K_{e2})}{N(K_{\mu2}) - N_b(K_{\mu2})} \cdot \frac{A(K_{\mu2}) f_\mu \varepsilon(K_{\mu2})}{A(K_{e2}) f_e \varepsilon(K_{e2})} \cdot \frac{1}{f_{LKr}},
\]

where \(N(K_{i2}) \) and \(N_b(K_{i2}) \) are the number of selected \(K_{i2} \) and estimated background respectively; \(D \) is the \(K_{\mu2} \) trigger downsampling coefficient; \(A(K_{i2}) \) is the geometrical acceptance; \(f_i \) is the corresponding lepton identification efficiency; \(\varepsilon(K_{i2}) \) is the trigger efficiency for correspondent decay mode; \(f_{LKr} \) is the global LKr efficiency.

2.3 Reconstruction

Reconstruction of both process is based on the same topology - one registered charged track and absence of clusters not associated to this track in the LKr calorimeter. Due to inefficiency
Lepton flavour universality and lepton flavour conservation tests at CERN

Sergey Podolsky

Track momentum, GeV/c

0 10 20 30 40 50 60 70

\(M_{\text{miss}}^2(e) \) as a function of lepton momentum for \(K_e^2 \) and \(K_\mu^2 \) decays (data). The wrong mass assignment for the \(K_\mu^2 \) decays leads to the momentum-dependence of \(M_{\text{miss}}^2(e) \).

2.4 Results

To take under control the dependency of acceptance on lepton momentum and associated systematic effects, estimation of \(R_K \) has been performed in 10 momentum bins (fig. 2 left). The overall data samples fit result is

\[
R_K = (2.488 \pm 0.007_{\text{stat}} \pm 0.007_{\text{syst}}) \times 10^{-5} = (2.488 \pm 0.010) \times 10^{-5}.
\]

As one can see on fig. 2 (right) uncertainty of \(R_K \) measurement significantly improved with the current result but it is far from the uncertainty of the SM prediction.

3. Lepton flavour conservation test

3.1 Motivation

There are number of models allow forbidden in the SM lepton number violation. For example, according to [8], the LFV process \(K^\pm \rightarrow \pi^\mp \mu^\pm \mu^\pm \) could be proceed via Majorana neutrino exchange and discovering this decay could be evidence of the New Physics. The most precise measurement of this process was performed by E865 collaboration at Brookhaven [9].
Lepton flavour universality and lepton flavour conservation tests at CERN
Sergey Podolsky

3.2 Measurement principle

Present measurement was performed by NA48/2 collaboration using data collected in 2003-2004. The setup have been used to collect $K \rightarrow \pi \mu \mu$ decays is similar to described above. Magnetic spectrometer was used for measurement of the three charged tracks and muon veto was used for muon identification. The $K \rightarrow \pi \pi \pi$ process was used for normalization.

3.3 Results

The present analysis has been performed together with $K^\pm \rightarrow \pi^\pm \mu^\pm \mu^\mp$ because they had the same topology of event with the only difference in sign of the final state particles. The resulting signal plots are on fig.3. 52 candidates were found in the signal region $(485MeV/c^2 < M(\pi\mu\mu) < 502MeV/c^2)$ while MC estimation of background gave 52.6 ± 19.8. This corresponds to a new upper limit of $BR(K^\pm \rightarrow \pi^\mp \mu^\pm \mu^\mp) < 1.1 \times 10^{-9}$ at 90% CL.
4. Prospects for forbidden kaon and pion decays measurements

The NA62 setup gives unique opportunities for kaon and pion studies. The initial state of reaction is under control thanks to precise position ($\sigma < 300\mu m$), momentum ($\sigma(p(K))/p(K) \sim 0.2\%$) and time ($\sigma(t) < 100\text{ps}$) measurement. The decay volume controlled by Large Angle Photo Veto (LAV) system with expected inefficiency of $\pi^0 < 10^{-8}$. Downstream part provides excellent photon measurement with LKr calorimeter ($\sigma(x) = \sigma(y) = 0.42/E(\text{GeV}) \oplus 0.06cm, \sigma(E)/E = 0.032/E(\text{GeV}) \oplus 0.09/E(\text{GeV}) \oplus 0.0042$), charged particle tracking ($\sigma(p)/p = 1.02\% \oplus 0.044\% \cdot p$), time measurement ($\sigma(t) < 100\text{ps}$), muon/pion separation (with inefficiency of 10^{-5}).

4.5×10^{12} kaon decays per year expected in the acceptance region. This also provides excellent opportunities for studies π^0 decays as product of $K^+ \rightarrow \pi^+ \pi^0$ channel. Mentioned factors make possible precision studies of the SM forbidden and ultra rare decays such as $K \rightarrow \pi \mu e, K \rightarrow \pi ee, K \rightarrow \pi \mu \mu, \pi^0 \rightarrow 3\gamma, \pi^0 \rightarrow 4\gamma, \pi^0 \rightarrow \mu e$ with unprecedented sensitivity.

References