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A measurement of prompt photon, diphoton and photon+jet cross-section, using data collected
by the ATLAS Experiment at the LHC in the years 2010 and 2011, is presented. Isolated prompt
photons provide a direct probe of short-distance physics, complementary to that provided by
measurements of jets or vector-bosons. The data are sensitive to the gluon density of the proton.
The inclusive prompt photon cross sections have been measured over a wide range of transverse
momenta; the diphoton cross section has also been measured as a function of diphoton mass,
total transverse momentum and azimuthal separation; the cross section for photons produced in
association with jets is also measured. The results are compared to the predictions of next-to-
leading-order QCD.
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1. Introduction

Measurement of the production of prompt photon provides a tool for probing perturbative
Quantum Chromodynamics (pQCD). Prompt photon production is sensitive to the gluon content
of the proton through the process qg→ qγ . Furthermore, photons are important for many physics
signatures (e.g. Higgs or graviton decays to photon pair). Additionally, the angular correlations
between the photon and the jet can be used to constrain the photon fragmentation functions [1].
Term prompt photon includes both direct and fragmentation photons. Direct photons originate from
the hard processes which are primarily Compton-QCD (qg→ qγ) and quark-antiquark annihilation
(qq→ gγ). Fragmentation photons are created by the fragmentation of the high-pT parton.
The results presented were obtained using ATLAS data at

√
s = 7 TeV collected at LHC during the

years 2010 (luminosity of ∼35 pb−1) and 2011 (luminosity of ∼5 fb−1).

2. The ATLAS detector

The ATLAS detector [2] is a multi-purpose particle physics detector with a forward-backward
symmetric cylindrical geometry and nearly 4π coverage in solid angle. It consists of three different
detector systems - the Inner Detector (ID), system of calorimeters, and the Muon spectrometer. For
the photon physics, the ID and calorimeters are the most relevant subdetectors.
The photons are reconstructed from clusters of calorimeter towers. The jets are reconstructed from
topological clusters built from calorimeter cells, using the anti-kT algorithm [3].
Events are required to have at least one reconstructed primary vertex with at least three associated
tracks consistent with the beam spot position.

3. Selection of tight isolated photon

Only tight and isolated photons are used in these analyses. Tight selection uses several shower
variables to discriminate signal from background. True prompt photons are expected to have a
small hadronic leakage (the ratio between the transverse energy deposited in the first layer of the
hadronic calorimeter and the transverse energy of the photon candidate) and a narrower energy
profile in the electromagnetic calorimeter (based on the energy in deposited in 3×7 cells and the
RMS width of the energy distribution along η in the second layer of the electromagnetic calorime-
ter). Tight criteria also reject wide showers consistent with jets (using the total RMS width of the
energy distribution along η), the ones with two separated maxima in the first layer (based on the
asymmetry between the first and second maxima in the energy profile along η and the energy differ-
ence between the second maximum and the minimum between the two maxima), and two showers
merged in a wider maximum (using the fraction of the energy in seven strips centered around the
first maximum that is not contained in the three core strips and the RMS width of the energy distri-
bution computed with the three core strips). Different selections provide varying efficiencies and
background rejections. The tight selection is optimised for the best background rejection.
Photons are required to be isolated both in electromagnetic and hadronic calorimeters. Photon

transverse isolation energy (E iso
T ) is energy deposited inside a cone of R =

√
(∆η)2 +(∆φ)2 = 0.4,

excluding contributions from 5×7 electromagnetic calorimeter cells around the photon barycenter.
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The value of cut on E iso
T is analysis dependent.

Based on isolation and identification, photons are divided into four groups. This allows for an
estimate of the number of signal photons can be obtained by a 2D sideband method.

4. Isolated prompt photon

The isolated prompt photon cross-section was measured using data collected in the years 2010
[4] and 2011 [5].

(a) prompt photon cross-section
based on 2010 data, |η |< 0.6 [4]

(b) prompt photon cross-section based
on 2011 data, |η |< 1.37 [5]

Figure 1: Measured prompt photon cross-sections in central pseu-
dorapidity bins as a function of Eγ

T

In the 2010 analysis, pho-
tons with 45 GeV<Eγ

T <400
GeV were sorted into four
pseudorapidity bins: |ηγ | <
0.6, 0.6≤ |ηγ |< 1.37, 1.52≤
|ηγ | < 1.81, and 1.81 ≤
|ηγ |< 2.37. The events were
selected using a single pho-
ton trigger with a threshold
of 40 GeV. The photons were
tight with E iso

T < 3 GeV. The
MC samples were simulated
using PYTHIA and HERWIG.
The NLO prediction was obtained with JETPHOX.
The cross-section for the most central bin is shown in Figure 1a. It also contains results from a pre-
vious analysis [6] using data starting at Eγ

T = 15 GeV. Both statistical and systematic uncertainties
are included in the error bars. The NLO prediction describes data - except the low Eγ

T region. The
underestimation of uncertainty associated with the NLO predictions is caused by the contribution
of a fragmentation component.
In the analysis of 2011 data, photons were sorted into two pseudorapidity bins: |ηγ | < 1.37 and
1.52≤ |ηγ |< 2.37 . Eγ

T was in the region 100 - 1000 GeV. Single photon trigger with the threshold
of 80 GeV was used. The photons were tight with E iso

T < 7 GeV. The simulated samples were
created using PYTHIA and HERWIG. The NLO prediction was obtained with JETPHOX.
A result of 2011 data analysis for the most central bin is shown in Figure 1b. The NLO prediction
is in agreement with the data. PYTHIA describes data well, HERWIG values lie below the data.

5. Diphoton

The isolated photon pair cross-section was measured using data collected in 2011 [7].
Photons were sorted into two pseudorapidity bins: |ηγ |< 1.37 and 1.52≤ |ηγ |< 2.37. The leading
photon was required to have Eγ

T 1>25 GeV, the subleading one Eγ

T 2>22 GeV. The angular separation
between the two photons was ∆R > 0.4. The events were selected using a diphoton trigger with
threshold of 20 GeV. The photons were tight with -4 GeV< E iso

T <4 GeV (because 2D template
fit, performed as a cross-check, starts at -4 GeV). The predictions were provided by PYTHIA and
SHERPA at LO, by DIPHOX complemented by GAMMA2MC at NLO, and by 2γNNLO at NNLO.
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(a) diphoton cross-section and comparison with
LO predictions [7]

(b) diphoton cross-section and comparison with
NLO and NNLO predictions [7]

Figure 2: Measured diphoton cross-sections as a function of pγγ

T and comparisons with LO, NLO,
and NNLO predictions

The results of the diphoton analysis are shown in the Figures 2a and 2b. Error bands include
only statistical uncertainty for the LO comparison. The generators mostly underestimate the data
because of missing higher orders contributions. SHERPA is closer to data than PYTHIA. For NLO
and NNLO, statistical, PDF and scale uncertainties are included in the error band. The NLO
prediction underestimates the data because of missing NNLO corrections. The NNLO prediction
underestimates the data in the regions populated by the contribution from fragmentation because
2γNNLO only provides a description of the direct component. 2γNNLO agrees with data better
than DIPHOX+GAMMA2MC.

6. Photon+jet

There are two measurements of photon+jet cross-section using 2010 data: the first one focus-
ing on the basic cross-section measurement [8] and the second one on the photon+jet dynamics [9].
In the first analysis, photons with Eγ

T > 25 GeV were measured in pseudorapidity range |ηγ |< 1.37.
The events were selected using a single photon trigger with a threshold of 40 GeV(20 GeV) for
Eγ

T > 45 GeV(Eγ

T > 25 GeV). The photons were tight with E iso
T < 3 GeV. The jets were from the

region |y jet | <4.4. The minimum separation between leading jet and photon was ∆R > 1.0. Jets
were defined using anti-kt algorithm with R=0.4. Simulated samples were created using PYTHIA,
HERWIG +JIMMY and JETPHOX for both analyses, SHERPA was used only in the first one.
A resulting basic cross-section is shown in Figure 3a. It was measured in three jet rapidity bins:
|y jet | < 1.2, 1.2<|y jet |< 2.8, and 2.8|y jet |< 4.4 for two configurations: ηγy jet ≥ 0 and ηγy jet < 0.
The errors in the figures include both statistical and systematic uncertainties. NLO prediction is in
agreement with the measured cross sections.
The analysis of the dynamics investigated the cross-section as a function of several variables. The
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(a) Photon+jet cross-sections as a function of Eγ

T
for |y jet | < 1.2 and ηγ y jet ≥ 0 [8]

(b) Photon+jet cross-sections as a function of
p jet

T [9]

Figure 3: Measured photon+jet cross-sections as a function of Eγ

T and p jet
T

phase space of events was as follows: Eγ

T > 45 GeV, |ηγ | < 1.37, 1.52 ≤ |ηγ | < 2.37, P jet
T > 40

GeV, |η jet | < 2.37, ∆R2
γ j > 1. Jets were defined using anti-kt algorithm with R=0.6. The photons

were tight with E iso
T < 3 GeV.

A measured cross-section is shown in Figure 3b. NLO prediction is in fair agreement with data.

7. Summary and conclusion

A measurement of prompt photon, diphoton and photon+jet cross-section, using data at
√

s = 7
TeV from the years 2010 and 2011, is presented. The prompt photon production is in good agree-
ment with predictions except for very low values of Eγ

T corresponding to small values of xT . NLO
prediction is less accurate in this region, PYTHIA describes data well and HERWIG values lie be-
low the data. For diphoton production, predictions underestimate data due to the various reasons:
PYTHIA and SHERPA because of missing higher-order contributions, DIPHOX+GAMMA2MC be-
cause of missing NNLO contributions, and 2γNNLO because of missing fragmentation component.
Photon+jet production is in fair agreement with both LO and NLO predictions.
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