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Studying jet production with event shapes can be advantageous, since it is possible to achieve
higher precision compared to exclusive jet cross sections defined with jet algorithms. In e+e−

collisions a classical example is thrust T = 1− τ [1], where the hadronic final state is constrained
to two jets for small τ . Here results are available up to N3LL+O(α3

s ) [2, 3, 4, 5, 6, 7, 8, 9]
and this allows ∼ 1% level theoretical accuracy in αs extractions. A version of DIS thrust has
been studied in HERA experiments [10, 11, 12, 13, 14, 15] and was calculated in [16, 17] at
NLL+O(α2

s ) accuracy. However, the HERA definition of the DIS thrust introduces a technical
obstacle in theoretical calculations beyond NLL accuracy because it leads to non-global logarithms
and it is unknown how to resum these beyond the leading logs [17, 18]. To determine higher
order results for the log resummation and to rigorously include power corrections it is useful to
derive factorization theorems that account for results to all orders in perturbation theory as well as
the leading power corrections. To do this we use the event shape 1-jettiness, which is a thrust-like
event shape without non-global logarithms. We define three versions of 1-jettiness in Sec. 1, review
results for the factorization theorems for these observables in Sec. 2, and give numerical results for
1-jettiness distributions up to NNLL accuracy in Sec. 3 [19].

1. 1-Jettiness for DIS

The 1-jettiness is a special case of N-jettiness introduced in Ref. [20]. The N-jettiness is a
generalization of thrust and a small value of N-jettiness constrains the final state to contain N +NB

jets where NB is the number of initial state jets by ISR from proton beams and N is the number of
final state jets. In DIS NB is 1. In this paper we will focus on the case of a single final jet (N = 1),
for which the DIS 1-jettiness observable is defined by

τ1 =
2

Q2 ∑
i∈X

min{qB · pi,qJ · pi} . (1.1)

Here a four vector qB points along the incident proton momentum and a four vector qJ is picked
to determine an axis for the measurement of the final-state jet. The min chooses the smaller scalar
product, and also groups all particles in the final state X into two regions, particles closer to qB

(smaller qB · pi) and those closer to qJ (smaller qJ · pi). This grouping depends on the choice of qB

and qJ . We consider three different cases:

τ
a
1 : qa

B = xP , qa
J = jet axis (1.2a)

τ
b
1 : qb

B = xP , qb
J = q+ xP (1.2b)

τ
c
1 : qc

B = P , qc
J = k , (1.2c)

where P, k, and q are the initial proton, incoming electron, and virtual boson momenta, respectively,
and x = Q2/(2P · q) is the Björken scaling variable where q2 = −Q2. The three variants τ

a,b,c
1

in Eq. (1.2) are named for the corresponding properties of the vector qJ . In τa
1 , qa

J is aligned
with a jet axis that is defined either by a jet algorithm, or by a minimization of the 1-jettiness
in Eq. (1.1) as in [21]. In τb

1 , the vectors qb
J and qb

B are back-to-back in the Breit frame. τb
1 can

be rewritten in a way that is equivalent to one of the measured DIS thrust distributions except
for the normalization [16, 19] and it could be analyzed with existing thrust data from the HERA
experiment. Similarly, for τc

1 the vectors qc
B and qc

J are back-to-back in the center-of-momentum
frame.
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2. Factorization Theorems for Different Jet Axes

All orders factorization theorems for the three versions of 1-jettiness in Eq. (1.2) can be used
to obtain higher order resutls, and here we briefly describe them and highlight their differences. A
complete derivation and further details can be found in [19]. A factorization theorem for τa

1 also
has been obtained in [22, 23]. The cross section for the three cases can be obtained as special cases
of the general result

dσ

dxdQ2 dτ1
=

dσ0

dxdQ2

∫
dtJ dtB dkS d2p⊥ δ

(
τ1−

tJ
sJ
− tB

sB
− kS

QR

)
×∑

κ

Hκ(Q2,µ) Jq(tJ− (q⊥+p⊥)2,µ) Bκ/p(tB,x,p2
⊥,µ) Shemi(kS,µ) , (2.1)

where σ0 is the Born cross section, sJ,sB,QR are normalization constants which are different for
τ

a,b,c
1 (see [19]), and κ is quark/antiquark flavors. Hκ is a hard function containing virtual correc-

tions, and determined by matching QCD onto SCET. Jq is a quark jet function describing radiation
of collinear quarks and gluons from an initial quark. Bκ/p is a quark beam function [24, 25, 26]
with a perturbative kernel for collinear radiation and the parton distribution function (PDF) as

Bκ/p(tB,x,p2
⊥,µ) =∑

j

∫ 1

x

dz
z

Iκ j

(
tB,

x
z
,p2
⊥,µ

)
f j/p(z,µ), (2.2)

where tB is the transverse virtuality (p+p−) of the quark κ , and p⊥ is a transverse momentum of
initial state radiation (ISR). Shemi is the hemisphere soft function that describes radiation of soft
particles from initial and final states. Note that Shemi for the three observables τ

a,b,c
1 is the same,

which can be proved by using rescaling invariance of soft Wilson lines. Finally, q⊥ is the transverse
momentum of the virtual boson respect to the jet and beam axes qB and qJ in Eq. (1.1).

Eq. (2.1) has different transverse momentum dependencies for the three 1-jettinesses. In the
case of τa

1 , qJ is aligned with the jet axis and the argument of the jet function tJ− (q⊥+p⊥)2→ tJ .
Here the transverse integral acts on the beam function and it becomes the ordinary beam function
defined in Ref. [24]. For τb

1 , q⊥ is zero because q is written as a linear combination of qB,J , but both
Jq and Bκ/p involve p⊥. For τc

1 there is no simplification from Eq. (2.1). Because of the different
transverse momentum dependence in the beam function for τb

1 and τc
1 , the difference between these

observables is sensitive to the transverse momentum of the ISR.
Hard, jet, beam, and soft functions in Eq. (2.1) each depend on a factorization scale µ (which

is also precisely the renormalization scale in SCET). These functions contains logs of µ2/Q2,
µ2/(τ1Q2), or µ2/(τ2

1 Q2) and there are always large logs when τ1 � 1. The large logs should
be resummed to achieve accurate prediction and this is achieved by using renormalization group
evolution (RGE) in SCET. Each function is evolved from the natural scale µH,J,B,S where its logs
are minimized to a common (arbitrary) scale µ . This sums up towers of logs of τ1 to all order in
αs. The logarithmic accuracy of the resummation is determined by the αs order of the anomalous
dimensions. In this paper, our result of 1-jettiness is given to NNLL accuracy which requires 3-
loop cusp anomalous dimension, 2-loop anomalous dimensions, and complete 1-loop results for
the hard, jet, beam, and soft functions.

Nonperturbative effects in the soft function from gluons with momenta ∼ ΛQCD can be ac-
counted for via a shape function. To illustrate how the nonperturbative effect deforms perturbative
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result, we adopt a simple model function for the peak region (τ1 ∼ 2ΛQCD/Q). In the tail re-
gion (2ΛQCD/Q� τ1 � 1) the universality of the leading nonperturbative corrections has been
shown for various e+e− event shapes and collision energies [27, 28, 29, 30] (for earlier work
see [31, 32, 33]). This universality is also valid for power corrections for the three results consid-
ered in Eq. (2.1). In the tail region, the dominant power corrections are determined by a single
parameter Ω

a,b,c
1 as

dσ

dτ1
=

dσpert

dτ1
− 2Ω1

QR

d2σpert

dτ2
1

+ · · · , (2.3)

where we leave x and Q dependencies in the cross section implicit. Note that Ω1 is rigorously de-
fined as a matrix element of a product of soft Wilson lines. In Ref. [19], we proved the universality
of Ω1 for the three 1-jettinesses in the presence of hadron mass effects:

Ω1 = Ω
a
1 = Ω

b
1 = Ω

c
1 . (2.4)

This prediction can be tested experimentally.

3. Numerical results at NNLL

Lets consider numerical results for the three 1-jettiness: τa
1 , τb

1 , and τc
1 . The results are accurate

for small τ1, and are resummed to LL, NLL, or NNLL accuracy, and also include the singular terms
at fixed order O(αs). We present the τa

1 spectra first, and then compare τb
1 and τc

1 spectra to τa
1 . For

the total invariant mass the value s = (300 GeV)2 in the H1 and ZEUS experiments is used. We
also present cumulant cross sections σc(τ1) which are defined as

σc(τ1,x,Q2) =
1

σ0

∫
τ1

0
dτ
′
1

dσ

dxdQ2 dτ ′1
, (3.1)

where σ0 is the Born cross section.
In the calculations of Eq. (3.1), the matrix elements H, J, B, and, S are evaluated at their

natural scales µH,B,J,S, at which logarithms in their fixed order calculations are minimized, and are
then evolved to a common scale µ . For example, the natural scale for µS is τ1Q. The evolution
sums up logτ1 terms, which is important when τ1� 1. For very small τ1 ∼ ΛQCD/Q the scale µS

approaches the nonperturbative region, and for values in this region must be frozen at a fixed scale
∼ 1GeV since otherwise the perturbative expansion for the soft functions anomalous dimension
fails. For large τ1 ∼ 1 the logs are not large and the resummation must be turned off so that
the fixed order NLO result is reproduced. The scales µH,B,J,S must change with τ1 to meet these
requirements, which is achieved with “profile functions” which are used for the results in Fig. 1
and Fig. 2. Perturbative uncertainties are computed by varying all scales up/down by factors of
2, as well as by other independent variations of the various scales, and the uncertainty from these
variations decrease as the order in resummed perturbation theory increases. Explicit expressions of
the profile functions and the variations used are given in Ref. [19].

Fig. 1 shows the τa
1 cumulant (Left) and differential (Right) distribution at Q = 80 GeV and

x = 0.2. Three curves represent the results resummed to LL, NLL, and NNLL accuracy and their
perturbative uncertainty bands. The plot shows an excellent order-by-order convergence from LL
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Figure 1: Left: Cumulant distribution in τa
1 . Colored bands and central lines show theoretical uncertainties

and central values to LL (dotted line, green band), NLL (dashed line, blue band), and NNLL (solid line, red
band) accuracy and the horizontal dashed line is the total cross section. Right: Differential distribution in τa

1
in the peak region, NNLL with nonperturbative shape function taken into account (NNLL PT+NP, dashed,
orange), and without NP shape function at fixed-order αs (NLO PT, dotted, gray) and resummed (NNLL PT,
solid, red).

to NNLL order. One also finds only a small difference between the total cross section at O(αs)

(dashed horizontal line) and the NNLL cumulant at large τa
1 , indicating that the singular terms

dominate. (The remaining difference estimates the size of the small nonsingular terms not taken
into account in this work.) In the differential distribution, the NNLL result with and without non-
perturbative effects (NNLL PT + NP and NNLL PT) is presented in comparison with purely fixed-
order NLO results (NLO PT). For the purpose of illustrating the nonperturbative effect, we use the
simplest shape function with a single basis function and Ω1 = 0.35 GeV for the nonperturbative
parameter and convolved the perturbative cross section with the shape function. The dominant ef-
fect is a shift to the cross section’s τa

1 value. Above the peak region this correction reduces to the
simple power correction in Eq. (2.3) determined by Ω1 ∼O(ΛQCD/τ1Q). For a more realistic peak
region analysis, a shape function with more basis functions should be used and parameters in the
basis should be determined from experimental data. In the endpoint region, the NLO result blows
up while the NNLL result is well behaved due to the resummation of large logs.
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Figure 2: Left: Difference between τb
1 and τa

1 cumulant distributions at 2 sets of Q and x. The difference
vanishes at NLL accuracy. Right: τc

1 cumulant distribution in comparison to τa
1 distribution. Notice that τc

1
distribution has a threshold at 1− y = 0.1. The horizontal dashed line is the total cross section.
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The τb
1 cross section differs from τa

1 by a single term at NLO, which contains lnz. The term
is convolved with PDF and integrated over from x to 1 and its contribution to the cross section is
larger for smaller x. This is shown in the left panel in Fig. 2, which displays the percent difference
at NNLL for two sets of (Q,x) values: (80 GeV,0.2) and (40 GeV,0.02). For x = 0.2 the size of
the difference is a few percent, which is small compared to that for smaller x = 0.02. The difference
goes up to 10-15% at x = 0.02. This difference is not sensitive to Q, because of the moderate Q
dependence in the cross section. Note that τa

1 and τb
1 do not differ at NLL because both their NLL

logs and LO cross sections are the same.
The 1-jettiness τc

1 measures a jet close to the z axis (incoming electron direction) in the CM
frame and the factorization theorem in Eq. (2.1) is valid for a jet with small transverse momentum
q2
⊥= (1−y)Q2�Q2. By the relation y=Q2/xs this means that values of Q and x should be chosen

to satisfy 1− y� 1. Here, we use Q = 90 GeV and x = 0.1 which corresponds to y = 0.9. The
right panel in Fig. 2 shows τc

1 in comparison with the τa
1 cumulant distribution at NNLL. The most

notable feature is the threshold θ(τc
1 −1+ y) which shifts the τc

1 result. This feature is associated
with positivity of the jet mass M2

jet = (τc
1−1+ y)sJ at LO. In addition to the threshold the τc

1 curve
increases more gently than the τa

1 curve. This happens because the normalization factor for the
beam axis qB in τc

1 differs from that in τa
1 by a factor of 1/x.

4. Summary

Factorization theorems for two jets in DIS were derived for three versions of 1-jettiness τ
a,b,c
1

and numerical results were obtained up to NNLL order. The three 1-jettiness’ measure particles
relative to 3 different axes: jet axis, z-axis in the Breit frame and z-axis in CM frame. This leads
to different dependence on transverse momentum. The factorization theorem is composed of hard,
beam, jet, and soft functions currently known at an order that allows us to achieve NNLL accuracy.
This means that in lnσc we resum terms: αsL2 (αsL)k, αsL(αsL)k, and αs (αsL)k where L = logτ1

and k≥ 0. Nonperturbative effects in the distribution appear as a power correction determined by a
nonperturbative parameter Ω1 when τ1Q� ΛQCD, which is universal for each of τ

a,b,c
1 . Our results

contain the dominant singular terms appearing for small τ1. To be accurate for larger τ1 ∼ 1 we
need to include non-singular terms which can be done by matching the fixed order cross section
from the factorization theorem and full QCD. We leave this matching to future work.
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