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Both the higher energy and the initial state colored partons contribute to making exact calcula-

tions in QCD color space more important at the LHC than at its predecessors. This is applicable

whether the method of assessing QCD is fixed order calculation, resummation, or parton showers.

In this talk we discuss tools for tackling the problem of performing exact color summed calcula-

tions. We start with theoretical tools in the form of the (standard) trace bases and the orthogonal

multiplet bases (for which a general method of construction was recently presented). Following

this, we focus on two new packages for performing color structure calculations: one easy to use

Mathematica package, ColorMath, and one C++ package, ColorFull, which is suitable for more

demanding calculations, and for interfacing with event generators
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1. Introduction

The high energy available at the LHC and the initial state colored partons both contribute to

increase the number of colored partons involved in collisions, and indeed, QCD is a major back-

ground for most interesting processes. An accurate treatment of QCD and the color space asso-

ciated with it is therefore of increased importance. This is applicable independent of the method

of accessing QCD, fixed order calculations, resummation, or – as lately for the speaker – parton

showers [1].

We here discuss several tools for dealing with exact calculations in QCD color space. After

a few words of introduction in Section 2, we briefly review the standard “trace bases” method in

Section 3.

In Section 4, we present recent results on how to instead deal with color space using orthogonal

group theory based multiplet bases [2]. Finally, in Section 5, we introduce two computer algebra

codes for dealing with calculations in color space, the Mathematica package ColorMath [3], which

is designed do deal with color summed calculations of moderate complexity in a user friendly way,

and the C++ package ColorFull [4] which aims at dealing with trace bases in an event generator

context.

2. Color space

Due to confinement we never observe the color of individual partons in QCD. This distin-

guishes color from other internal degrees of freedom like spin, insofar as for the latter we actually

care about in which state a physical object is, rather than just under what representation it trans-

forms.

This property also opens up for the possibility to study summed (averaged) quantities only. It

is not hard to argue that for given external partons, the color summed (averaged) space is a finite

dimensional vector space equipped with a scalar product

〈A,B〉= ∑
a,b,c,...

(Aa,b,c,...)
∗Ba,b,c,... , (2.1)

where the sum runs over all quarks, anti-quarks and gluons. For example, if

A = ∑
g

(tg)a
b(t

g)c
d = ∑

g

a

b

c

dg
,

then

〈A|A〉= ∑
a,b,c,d,g,h

(tg)b
a(t

g)d
c(t

h)a
b(t

h)c
d . (2.2)

One way of dealing with the color space is to square the amplitudes one by one as they are en-

countered. Alternatively – and this is likely the preferred method for processes with many colored

partons – one may want to use a basis or a spanning set.
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3. Trace bases

A standard way of dealing exactly with QCD color space is to note that every four-gluon vertex

can be rewritten in terms of three-gluon vertices. The three gluon vertices in turn can be replaced

using i fabc = (1/TR)[tr(t
atbtc − tbtatc)], where TR is defined by tr[tatb] = TRδ ab, and all internal

gluon propagators can be removed using the Fierz or completeness relation,

= TR − TR
Nc . (3.1)

This can be applied to any QCD amplitude, tree level or beyond, and the result is in general a

linear combination of products of traces over gluon indices and traces that have been cut open, i.e.

color structures of the form

A + B + .... . (3.2)

For obvious reasons this type of basis is here referred to as a trace basis.

These bases [5 – 12] have several advantages. It is easy to see that a basis vector of this

type, results in at most two new basis vectors (in a larger vector space) once a gluon is emitted.

Furthermore, starting with any basis vector and exchanging a gluon between two partons results in

a linear combination of at most four basis vectors [12]. On top of this, powerful recursion relations

exist for the amplitudes multiplying the various color structures.

Trace bases, however, also come with significant drawbacks. Most importantly, they are not

orthogonal, and for more than Nc gluons plus qq -pairs the “bases” are also overcomplete. Further-

more, as the number of spanning vectors in these bases grows roughly as a factorial in Ng +Nqq

this rapidly becomes an issue [2].

4. Multiplet bases

It is therefore desirable to use minimal orthogonal bases. As QCD is based on SU(3), one way

to construct orthogonal bases is to use bases corresponding to irreducible representations in color

space. Basis vectors where at least one subset of partons transforms under a different representation

will then automatically be orthogonal. One way to enforce this is to sub-group the partons in order

to make sure that parton 1 and 2 are in a manifest multiplet M12, at the same time as partons 1,2,

and 3 are in a manifest multiplet M123 etc [13, 2].

As the decomposition of color space into irreducible representations can be enumerated using

Young tableau multiplication, the expectations on multiplet type bases are clear: In general (to

arbitrary order in perturbation theory), we expect to encounter any state where the incoming partons

are in multiplet M, and the outgoing partons in the same multiplet M. For example, for qq → qq

we have the Young tableau decomposition

⊗ = ⊕

3 3 6 3

,
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and the corresponding orthogonal basis vectors are

=
1
2

+
1
2

i

j

k

l

i

j

k

l

i

j

k

l
=

1

2

(

δ
i
kδ

j
l +δ

i
lδ

j
l

)

(4.1)

=
1
2

− 1
2

i

j

k

l

i

j

k

l

i

j

k

l
=

1

2

(

δ
i
kδ

j
l −δ

i
lδ

j
l

)

.

For processes with only quarks and anti-quarks (an incoming anti-quark can always be traded for

an outgoing quark etc., so we may always treat the color space as if we had Nq incoming quarks and

Nq outgoing quarks) orthogonal bases can be constructed similarly by using Hermitian versions of

Young projection operators [2, 8, 14].

For processes with gluons, the translation from Young tableaux to basis vectors is far from

obvious as the Young tableaux operate with quark units, rather than gluon units. We can enumer-

ate basis vectors using Young tableau multiplication, the problem lays in the construction of the

corresponding basis vectors.

Let us start with considering processes with gluons only. In the case of gg → gg the problem

of constructing orthogonal bases corresponding to the multiplets in 8⊗8 = 1⊕8⊕8⊕10⊕10+

⊕27⊕0 1 has been solved a long time ago [15 – 19]. Several solutions involve splitting the gluons

into qq -pairs and using that for each set of symmetries among the quarks and anti-quarks there is

precisely one “new” multiplet, i.e. precisely one multiplet that could not occur for fewer gluons.

For example, the decuplet corresponds to symmetrizing the quarks and anti-symmetrizing the

anti-quarks and can be obtained from the color structure

T10 ∼

1 2

1

2

. (4.2)

Similarly the anti-decuplet corresponds to 1

2
⊗ 1 2 , the 27-plet corresponds to 1 2 ⊗ 1 2 and the 0-plet

to 1

2
⊗ 1

2
. By projecting out parts corresponding to “old” multiplets, i.e., multiplets that can appear

also for fewer gluons, projection operators and basis vectors can be constructed. For more than two

gluons, the above picture is complicated in several ways:

(i) For each (anti-)quark Young diagram (Young tableau shape) there are many Young tableaux.

(ii) For each new overall multiplet, for example a 35-plet, there are in general several ways of

obtaining it, for example there is one 35-plet in 10⊗8 and one in 27⊗8.

On top of this, when constructing the basis vectors there are issues with multiple occurrences of

the same multiplet as well as with the construction of all vectors corresponding to “old” multiplets.

That this method for constructing basis tensors can be fruitful for more than two gluons there-

fore appears far from obvious. However, to make a long story short, we have shown that it is

[2]. The proof largely depends on one key observation, namely that starting in a given multiplet,

1For Nc > 3 there is an additional multiplet which vanishes for SU(3).
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corresponding to some qq -symmetries (such as 10, from 1 2 ⊗ 1

2
) it turns out that for each way of

attaching a quark box to the quark Young-tableau ( 1 2 ) and an anti-quark box to the anti-quark

Young tableau ( 1

2
), there is at most one new multiplet. For example, the projector P10,35 can be

seen as coming from

T10,35 ∼
P

10
P

10

1 3

2

1 2 3

, (4.3)

after having projected out "old" multiplets. In fact, for sufficiently large Nc, there is precisely one

new multiplet for each set of qq -symmetries. What appears as a problem in (i) is thus in fact the

resolution to the problem in (ii)!

In this way we can construct all projection operators for an arbitrary number of gluons, and

from these we can construct orthogonal minimal bases for any number of gluons. For the three

gluon case, we have explicitly constructed all 51 projectors and 265 bases vectors (for general

Nc). The generalization to processes involving both quarks and gluons is straightforward, as each

qq -pair either is in an octet, in which case it can be treated as a gluon or in a singlet.

5. Computer tools

In order to facilitate automatic color summed calculations the speaker has developed and cross

checked two independent computer algebra packages.

5.1 ColorFull

For the purpose of treating a general QCD color structure in the trace basis, a C++ color algebra

code, ColorFull [4], which creates trace bases for any number and kind of partons and to any order

in αs has been written. ColorFull also describes the effect of gluon emission and exchange, squares

color amplitudes and is planned to be published separately later this year.

5.2 ColorMath

ColorMath [3] is a user friendly Mathematica package for calculations in color space of mod-

erate complexity.

In its simplest form, the idea of ColorMath is that one should just write down the color struc-

ture, much like on paper, and then run CSimplify to contract color indices, for example

In[2]:= Amplitude = I f@g1, g2, gD t@8g<, q1, q2D

Out[2]= ä t8g<q1q2 f
8g1,g2,g<

In[3]:= CSimplify@Amplitude Conjugate@Amplitude �. g ® hDD

Out[3]= 2 Nc I-1 + Nc2M TR2

. (5.1)
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6. Conclusions

One way of dealing with exact calculations in color space is to use trace bases. This method

has advantages when it comes to simplicity, recursion relations and the effect of gluon exchange

and gluon emission. It is also the basis for the C++ code ColorFull [4], which is intended for

enabling advanced color calculations in an event generators context. This type of basis is, however,

overcomplete and not orthogonal, which becomes an issue for many partons due to the rapid growth

of the number of spanning vectors.

It is therefore desirable to construct minimal orthogonal bases, and we have recently outlined

a general recipe for group theory based minimal orthogonal multiplet bases for any QCD process

[2]. This can potentially very significantly speed up exact calculations in the color space of SU(Nc).

We have also presented a Mathematica package ColorMath [3] for performing color summed

calculations in SU(Nc).
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